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RESEARCH ARTICLE
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Medicine, Lincoln Memorial University, Harrogate, Tennessee, United States of America
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Abstract

Currently available diagnostic assays for leptospirosis cannot differentiate vaccine from

infection serum antibody. Several leptospiral proteins that are upregulated during infection

have been described, but their utility as a diagnostic marker is still unclear. In this study,

we undertook a lipidomics approach to determine if there are any differences in the serum

lipid profiles of horses naturally infected with pathogenic Leptospira spp. and horses vacci-

nated against a commercially available bacterin. Utilizing a high-resolution mass spec-

trometry serum lipidomics analytical platform, we demonstrate that cyclic phosphatidic

acids, diacylglycerols, and hydroperoxide oxidation products of choline plasmalogens

are elevated in the serum of naturally infected as well as vaccinated horses. Other lipids

of interest were triacylglycerols that were only elevated in the serum of infected horses

and sphingomyelins that were increased only in the serum of vaccinated horses. This

is the first report looking at the equine serum lipidome during leptospiral infection and

vaccination.

Introduction

Leptospirosis is a worldwide zoonotic disease that affects horses and many other mammalian

species, including man [1]. Leptospira interrogans serovar Pomona is commonly associated

with clinical leptospirosis in horses in the United States [2, 3] The disease in horses is mainly

characterized by spontaneous abortions and recurrent uveitis, with leptospiral abortions

occurring late in gestation, typically without any prior clinical signs [4]. Infected mares shed

leptospires in the urine for up to 14 weeks and can potentially be a source of infection to other

animals. Recurrent uveitis is an important sequela to leptospiral infection and a major cause

of blindness in horses [5]. A leptospiral serosurveillance conducted in 2012, reported a preva-

lence of 45% among horse population in 29 states of the United States and a Canadian prov-

ince [6].
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The microscopic agglutination test (MAT) is the gold standard in serodiagnosis of leptospi-

rosis. The MAT is performed by mixing serial dilutions of patient serum with a battery of live

Leptospira serovars, and the presence of leptospiral antibodies in the serum is detected by

dark-field microscopic examination for agglutination [7]. Among several obvious limitations

to the MAT is the test’s inability to distinguish between leptospiral antibodies generated as a

result of natural infection from that by vaccination. Vaccinated horses have antibodies to lep-

tospiral bacterin and give positive agglutination reactions in MAT. A test that overcomes the

technical limitations of the MAT and distinguishes between infected and vaccinated horses

would improve the diagnosis of equine leptospirosis. Recent advances in leptospiral research

has resulted in identification of a number of immunogenic leptospiral proteins that are either

exclusively expressed or significantly upregulated during infection in horses, but their useful-

ness in differentiating infected and vaccinated horses is still under investigation [8, 9, 10]. As

a result, there currently are no diagnostic tests to differentiate these two immune responses.

Alterations in lipid metabolism due to pathogen-induced immune activation have previously

been reported [11, 12, 13, 14, 15]. In this study, we asked if differences in host’s responses to

live, multiplying Leptospira versus killed leptospires, present in the vaccine, are reflected in the

serum lipidome of these two groups of horses. To that end, we used a non-targeted lipidomics

approach to compare serum lipidome of horses with leptospiral infection and horses vacci-

nated with a commercially available bacterin.

Materials and methods

Serum samples

Fifteen serum samples each from these three groups of horses were used in the study: (1)

unvaccinated, naturally infected (Microscopic agglutination test (MAT)-positive) horses, (2)

horses vaccinated with Lepto EQ Innovator (Zoetis Inc., Kalamazoo, MI), and (3) unvacci-

nated, unexposed (MAT-negative) horses (Table 1). Initial screening was performed by MAT,

following OIE protocol (http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.

01.12_LEPTO.pdf). Naturally infected horses were never vaccinated and had a MAT titer of

Table 1. MAT titers of the serum samples used in the study.

Control sera MAT titer Vaccinated sera MAT titer Infected sera MAT titer

UV1 Neg LV1 1:800 (P, G) LE1 1:3200 (P)

UV2 Neg LV2 1:1600 (P); 1:800 (G) LE2 1:800 (P)

UV3 Neg LV3 1:3200 (P); 1:100 (G) LE3 1:400 (P)

UV4 Neg LV4 1:3200 (P); 1:800 (G) LE4 1:400 (P)

UV5 Neg LV5 1:400 (P); 1:100 (G) LE5 1:800 (P)

UV6 Neg LV6 1:800 (P); 1:200 (G) LE6 1:1600 (P)

UV7 Neg LV7 Neg (P, G) LE7 1:400 (I)

UV8 Neg LV8 1:400 (P, G) LE8 1:200 (I)

UV9 Neg LV9 1:100 (P, G) LE9 1:200 (I)

UV10 Neg LV10 1:200 (G) LE10 1:12800 (P)

UV11 Neg LV11 1:100 (G) LE11 1:3200 (G)

UV12 Neg LV12 1:800 (P); 1:200 (G) LE12 1:6400 (P); 1:100 (G)

UV13 Neg LV13 1:200 (P); 1:100 (G) LE13 1:25600 (P); 1:400 (G)

UV14 Neg LV14 1:200 (P) LE14 1:200 (P); 1:3200 (G)

UV15 Neg LV15 1:6400 (P); 1:3200 (G) LE15 1:1600 (P)

MAT, microscopic agglutionation test; P, serovar Pomona; G, serovar Grippotyphosa; I, serovar Icterohaemorrhagiae.

https://doi.org/10.1371/journal.pone.0193424.t001
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1:200 or higher (Table 1). Horses in the vaccinated group did not have a history of prior expo-

sure to Leptospira spp. but ruling out any prior exposure is not possible. The control group

horses were never vaccinated and had no known history of a prior exposure.

All vaccinated and six of the fifteen samples in the infected group were sent to the UKVDL

for MAT titers. Remaining nine samples in the infected group were collected from two differ-

ent farms in Virginia and Kentucky. Five milliliters of blood was obtained from the jugular

vein of horses using a vacutainer needle (20G, 1.5”), a sleeve, and a 10 ml dry blood collection

tube (red top). Clotted blood samples were centrifuged at 2,000 x g for 15 minutes. Serum was

separated, stored frozen at -20˚C, and when required, shipped on dry ice. None of the samples

were thawed more than 2 times before the lipidomic analyses were done.

The samples used in this study were left-over aliquots of either clinical diagnostic samples

(University of Kentucky Veterinary Diagnostic Laboratory) or blood samples collected in a

phlebotomy teaching lab. The phlebotomy lab protocol was approved by the Lincoln Memorial

University’s Institutional Animal Care and Use Committee.

Lipid extraction and analysis

For the lipid extraction, 100 μL of serum were vortexed with 1 mL of methanol containing sta-

ble isotope internal standards ([2H4]DHA, [2H4]hexacosanoic acid, [2H7]cholesterol sulfate,

[2H5]MAG 18:1, [13C3]DAG 36:2, [2H31]PtdE 34:1, [2H54]PtdE 28:0, [2H31]PtdC 34:1, [2H54]

PtdC 28:0 and bromocriptine [16–18]. Next 1 mL of water and 2 mL of methyl-tert-butyl ether

were added and the tubes were vigorously shaken at room temperature for 30 min. The tubes

were next centrifuged at 5,000 xg for 15 min at room temperature and 1 mL of the upper

organic extracts was dried by centrifugal vacuum evaporation and dissolved in isopropanol:

methanol: chloroform (4:2:1) containing 7 mM ammonium acetate. Constant infusion lipido-

mics were performed utilizing high-resolution (140,000 at 200 amu) data acquisition, with

sub-millimass accuracy on an orbitrap mass spectrometer (Thermo Q Exactive) with succes-

sive switching between polarity modes.

In negative ion ESI, the anions of ethanolamine plasmalogens (PlsE), phosphatidylethanol-

amines (PtdE), lysophosphoethanolamines (LPE), phosphatidylglycerols (PG), phosphatidic

acids (PA), lysophosphatidic acids (LPA), cyclic phosphatidic acids (cPA), phosphatidylinosi-

tols (PI), ceramides, phosphatidylserines (PS) were quantitated and lipid identities validated

by MS/MS.

In positive ion ESI, the cations of choline plasmalogens (PlsC), hydroperoxy PlsCs, phos-

phatidylcholines (PtdC), lysophosphocholines (LPC), sphingomyelins (SM), monoacylglycer-

ols (MG), and acylcarnitines (ACar), and the ammonium adducts of diacylglycerols (DG),

triacylglycerols (TG), and cholesterol esters (CE) were quantitated and lipid identities vali-

dated by MS/MS. In the case of hydroperoxy PlsCs, structural identities were validated by the

loss of H2O2 with MS2 and generation of a major fragment for choline phosphate.

The cations and anions of bromocriptine were used to monitor for potential mass axis drift.

Between injections, the transfer line was washed with successive 500 μL washes of methanol

and hexane/ethyl acetate/chloroform (3:2:1) to minimize potential ghost effects.

Statistical analysis

R values (ratio of endogenous lipid peak area to the peak area of an appropriate internal stan-

dard) per 100 μL of serum were calculated. Data are presented as mean ± SEM. Data were

analyzed by ANOVA followed by the Dunnets test to compare the vaccinated and infected

groups to the controls. Individual data values are available in the Supplementary Information

(S1 Table)

Lipidomics of equine leptospirosis
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Results

Cyclic phosphatidic acids (cPA)

cPA 16:0 (Fig 1) was elevated in the serum of both the vaccinated and infected equine groups.

Tandem mass spectrometry validated the structure of cPA 16:0, with the anions for 16:0 and

glycerophosphate (-H2O) being monitored with 1.2 and 0.98 ppm mass errors, respectively

(Table 2). Other cyclic phosphatidic acids also were elevated in the serum of both the vacci-

nated and infected groups. These included cPA 18:0, cPA 18:1, and cPA 18:2 (Fig 2). The

structures were validated by MS2 with the product anions for glycerophosphate (-H2O) moni-

tored for all 3 cPAs and the respective fatty acid constituents 18:0, 18:1, and 18:2 monitored

(Table 2). These data clearly demonstrate that the Th1-type immune responses initiated by lep-

tospirosis [19] or by vaccination [20, 21] result in the generation of cPAs and that these may be

important as indicators of immune activation. Of particular interest, horse LV7, while vacci-

nated, did not demonstrate a MAT titer (Table 1). In contrast cPA changes similar to other

Fig 1. Equine serum levels of cyclic phosphatidic acid 16:0 (cPA) in a pilot study (N = 6 per group) and a

validation study (N = 15 per group). Con: controls; Vacc: vaccinated; Infect: infected. �, p< 0.01. R = ratio of the ion

intensity for the endogenous cPA to the ion intensity of the stable isotope internal standard.

https://doi.org/10.1371/journal.pone.0193424.g001

Table 2. Molecular anions of cyclic phosphatidic acids (cPA) and the associated products monitored with tandem mass spectrometry.

cPA Calc. Anion Obs. ppm1 Calc [Fatty acid]- Obs ppm2 Calc [GP-H2O]- Obs ppm3

16:0 391.2255 2.4 255.2329 1.2 152.9958 0.98

18:0 419.2568 2.1 283.2637 2.2 152.9958 0.98

18:1 417.2411 2.1 281.2480 2.5 152.9958 1.0

18:2 415.2255 2.0 279.2324 2.1 152.9958 .098

Cal., calculated;
1, observed cPA parts per million mass error;
2, observed MS2 product [fatty acid substituent] parts per million mass error;
3, observed MS2 product [glycerophosphocholine -H2O]- parts per million mass error.

https://doi.org/10.1371/journal.pone.0193424.t002

Lipidomics of equine leptospirosis
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vaccinated horses were detected, indicating that this lipid is a more sensitive indicator of

immune activation.

Cyclic phosphatidic acids are generated by phospholipase D-dependent transphosphatidy-

lation of lysophosphatidylcholines [22], which are generated by phospholipase A2 hydrolysis

of phosphatidylcholines [23] (Fig 3). In parallel with augmented cPAs, we monitored increased

Fig 2. Equine serum levels of cyclic phosphatidic acids (cPA 16:0, cPA 18:0, cPA 18:1, and cPA 18:2) and

lysophosphatidylcholines (LPC16:0, LPC 18:0, LPC 18:1, and LPC 18:2) in the validation study (N = 15 per

group). Con: controls; Vacc: vaccinated; Infect: infected. �, p< 0.01 vs. controls; #, p< 0.01 vs. the vaccinated cohort.

R = ratio of the ion intensity for the endogenous cPA or LPC to the ion intensity of the stable isotope internal standard.

https://doi.org/10.1371/journal.pone.0193424.g002

Lipidomics of equine leptospirosis
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serum levels of the associated lysophosphatidylcholine (LPC) precursors (Fig 3), albeit, the

increases in LPC levels were greater in vaccinated compared to infected horses (p< 0.01).

Neutral lipids

Diacylglycerols (DAG) also were elevated in the serum of both vaccinated and infected horses.

These included DAG 34:1, DAG 34:2, DAG 34:3, DAG 36:1, DAG 36:2 (Fig 4), DAG 36:3,

DAG 36:4, and DAG 36:5. Of particular interest, horse LV7, while vaccinated, did not demon-

strate a MAT titer (Table 1). In contrast DAG changes similar to other vaccinated horses were

detected, indicating that this lipid is a more sensitive indicator of immune activation.

In contrast, triacylglycerols were only increased in the serum of infected horses. These

included TAG 48:1, TAG 48:2, TAG 48:3, TAG 50:1, TAG 50:2, TAG 50:3, TAG 50:4 (Fig 4),

TAG 50:5, TAG 52:1, TAG 52:2, TAG 52:3, and TAG 52:4.

Fig 3. Biosynthetic pathway for cyclic phosphatidic acids (cPA). LPC: lysophosphatidyl-choline; PLA2:

phospholipase A2; PLD: phospholipase D; PtdC: phosphatidylcholine. ppm, parts per million mass error.

https://doi.org/10.1371/journal.pone.0193424.g003

Lipidomics of equine leptospirosis
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Sphingomyelins (SM)

From evaluations of sphingolipids we noted that sphingomyelins were selectively elevated in

the serum of vaccinated horses. These included SM d18:1/18:3, SM d18:1/20:0, SM d18:1/22:1,

SM d18:1/22:3, SM d18:1/24:0 (Fig 5), SM d18:1 /24:1, SM d18:1/24:2 (Fig 5), and SM d18:1/

24:3. In contrast SM changes similar to other vaccinated horses were detected, indicating that

this lipid is a more sensitive indicator of immune activation.

Fig 4. Equine serum levels of diacylglycerol 36:2 (DAG 36:2) and triacylglycerol 50:4 (TAG 50:4) in a pilot study

(N = 6 per group) and a validation study (N = 15 per group). Con: controls; Vacc: vaccinated; Infect: infected. �,

p< 0.01. R = ratio of the ion intensity for the endogenous TAG to the ion intensity of the stable isotope internal

standard.

https://doi.org/10.1371/journal.pone.0193424.g004

Lipidomics of equine leptospirosis
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While infections generally result in the induction of serine palmitoyltransferase and thereby

augmentation of sphingomyelin synthesis [11], this is not universally noted.

Hydroperoxy glycerophospholipids

The hydroperoxy oxidation products of a number of choline plasmalogens possessing unsatu-

rated fatty acid substituents were detected in infected and vaccinated horses but were greater

Fig 5. Equine serum levels of sphingomyelins (SM), SM d18:1/24:0 and SM d18:1:24:2 in a pilot study (N = 6 per

group) and a validation study (N = 15 per group). Con: controls; Vacc: vaccinated; Infect: infected. �, p< 0.01.

R = ratio of the ion intensity for the endogenous SM to the ion intensity of the stable isotope internal standard.

https://doi.org/10.1371/journal.pone.0193424.g005

Lipidomics of equine leptospirosis
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in the vaccination group (Fig 6). The identities of these oxidation products were validated via

tandem mass spectrometry. Using this approach we monitored the loss of both H2O and H2O2

(Table 3) and the generation of choline phosphate (184.0739; < 1 ppm mass error), hallmark

features for this class of oxidized lipids [24, 25].

Discussion

There is an ever increasing knowledge base regarding the biochemistry of the immune

response during infections and inflammatory diseases. A shift in the Th1 and Th2 responses

generally results in up-regulation of Th2-type pro-inflammatory cytokines with bacterial infec-

tions [26, 27], viral infections [28, 29], and parasitic invasions [30]. In addition local immune

responses, such as in the lung [31], brain [32], and the intestine in inflammatory bowel disease

(Crohn’s Disease and Ulcerative Colitis) [33] elicit alterations in the Th1 and Th2 cytokine

responses. Pro-inflammatory cytokines act to induce indoleamine-2,3-dioxygenase-1 thereby

acting to deplete tryptophan and generate kynurenine. As a result of this activated pathway,

Fig 6. Equine serum levels of choline plasmalogen (PlsC) hydroperoxides (N = 15 per group). Con: controls; Vacc:

vaccinated; Infect: infected. �, p< 0.01; ��, p< 0.05. R = ratio of the ion intensity for the endogenous hydroperoxide to

the ion intensity of the stable isotope internal standard.

https://doi.org/10.1371/journal.pone.0193424.g006

Table 3. Molecular anions observed for the hydroperoxy oxidation products of serum choline plasmalogens (PlsC) and their associated MS2 products.

Hydroperoxy Lipid Calc. Anion Obs. ppm1 Calc [M-H2O]- Obs ppm2 Calc [M-H2O2]- Obs ppm3

PlsC 34:2 774.5643 0.81 756.5537 0.26 740.5588 2.4

PlsC 36:2 802.5956 0.38 784.5850 0.37 768.5901 1.8

PlsC 36:4 798.5643 1.3 780.5537 0.52 764.5588 2.3

PlsC 38:6 822.5643 1.9 804.5537 0.61 788.5588 2.4

Cal., calculated,
1, observed hydroperoxy lipid parts per million mass error;
2, observed MS2 product [M-H2O]- parts per million mass error;
3, observed MS2 product [M-H2O2]- parts per million mass error.

https://doi.org/10.1371/journal.pone.0193424.t003

Lipidomics of equine leptospirosis
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the kyneurenine/tryptophan ratio is often used as a surrogate biomarker of immune activation

[34, 35].

Lipid metabolism is also altered by the acute phase reactant response. For example, elevated

levels of circulating triglycerides have been observed experimentally with cytokine and lipo-

polysaccharide injections [11,12, 36], as a result of augmented hepatic lipogenesis. Elevated

triglycerides have also consistently been reported with bacterial [11,12,13] and parasitic infec-

tions [14, 15]. Altered sphingomyelin metabolism has also been reported, with increases in

pneumonia patients [37] and decreases in HIV patients [38].

To further evaluate alterations in the serum lipidome during immune activation we took

advantage of the opportunity to compare the serum lipidome of horses with active leptospiro-

sis infection [1, 4, 39] and horses vaccinated with a commercial bacterin [40, 41]. Our results

show that serum levels of cyclic phosphatidic acids (cPA), diacylglycerols, and hydroperoxide

oxidation products of choline plasmalogens were elevated in both vaccinated and naturally

infected horses. Perhaps more importantly, we observed that triacylglycerols were only ele-

vated in the serum of infected horses and sphingomyelins were increased only in the serum of

vaccinated horses.

In previous and ongoing studies in our lab we have demonstrated increased levels of cPAs

in airway surfactant of horses with asthma [42]. Phospholipase A2 [43, 44] and PLD [45, 46]

are both augmented during the early phase of infections suggesting that our cPA biomarkers

may be simple biochemical readouts of the induction of these enzymes by immune activation

(see Fig 3). Of particular note is that our data is the first to demonstrate that vaccination can

activate the same enzyme systems. These data suggest that cPAs may be useful as global bio-

markers of immune activation during various infections in horses and possibly other animal

species. Considering the breadth of bioactivities of this class of lipids [47], their contributions

to immune responses may be diverse, particularly since they modulate nuclear function

[48,49]. In this regard, pharmacological studies have shown that cPA analogs potently reverse

experimental osteoarthritis [50], block immune-induced demyelination [51], and inhibit the

growth of cancer cells [52].

Plasmalogens are essential membrane lipids, particularly in lipid rafts [23]. Alterations in

these structural glycerophospholipids, induced by lipid oxidation, may play a role in the host’s

immune response, particularly in the development of immunity as evidenced by the dramatic

increases in circulating hydroperoxy choline plasmalogens in the Leptospira-vaccinated ani-

mals. The roles of singlet oxygen-oxidation, free radicals and/or oxygenases in the production

of these lipids with vaccination remain to be defined.

In this study we demonstrated that triacylglycerols (TAGs) are elevated only in the serum

of naturally infected horses. Previous reports also have consistently demonstrated elevated

serum levels of TAGs in both experimental and clinically unresolved immune activation [12–

15,36], including human leptospirosis [13]. The mechanism involved in immune-dependent

hypertriglyceridemia is thought to involve cytokine activation of triglyceride synthesis in the

liver [11]. In contrast, DAGs were elevated in both infected and vaccinated cohorts, suggesting

that the synthesis or metabolism of these neutral lipids is altered in both resolved and unre-

solved immune activation. This is the first report of these changes in DAG levels with immune

activation. In this regard, the reports of increased expression of PLD [45, 46] during the early

phase of infections suggest that this immune-activated mechanism may be involved in the gen-

eration of increased levels of DAGS from glycerophospholipids since PLD metabolizes glycer-

ophospholipids to phosphatidic acids, the direct precursors of DAGs [23].

In our study, sphingomyelins were increased only in the serum of vaccinated horses. Sphin-

gomyelin levels have previously been shown to be elevated in patients with pneumonia [37],

and melioidosis [53] while they are unaltered in several bacteremic conditions [53] and
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decreased in AIDS patients [38]. Our data indicate that the immune response induced by vac-

cination has a more dramatic effect than leptospiral infection on sphingomyelin synthesis in

horses. The role of these lipids in the immune response remains to be more clearly defined.

In summary, our results provide important information about differences in serum lipi-

dome of naturally infected and Leptospira-vaccinated horses. Since this study utilized diagnos-

tic and clinical samples, a more controlled, time-matched study is required to further ascertain

usefulness of the candidate lipids in differentiating vaccine from infection responses to Leptos-
pira spp.
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