306 research outputs found
Superconducting p-branes and Extremal Black Holes
In Einstein-Maxwell theory, magnetic flux lines are `expelled' from a black
hole as extremality is approached, in the sense that the component of the field
strength normal to the horizon goes to zero. Thus, extremal black holes are
found to exhibit the sort of `Meissner effect' which is characteristic of
superconducting media. We review some of the evidence for this effect, and do
present new evidence for it using recently found black hole solutions in string
theory and Kaluza-Klein theory. We also present some new solutions, which arise
naturally in string theory, which are non-superconducting extremal black holes.
We present a nice geometrical interpretation of these effects derived by
looking carefully at the higher dimensional configurations from which the lower
dimensional black hole solutions are obtained. We show that other extremal
solitonic objects in string theory (such as p-branes) can also display
superconducting properties. In particular, we argue that the relativistic
London equation will hold on the worldvolume of `light' superconducting
p-branes (which are embedded in flat space), and that minimally coupled zero
modes will propagate in the adS factor of the near-horizon geometries of
`heavy', or gravitating, superconducting p-branes.Comment: 22 pages, 2 figure
Learning problem solving strategies using refinement and macro generation
In this paper we propose a technique for learning efficient strategies for solving a certain class of problems. The method, RWM, makes use of two separate methods, namely, refinement and macro generation. The former is a method for partitioning a given problem into a sequence of easier subproblems. The latter is for efficiently learning composite moves which are useful in solving the problem. These methods and a system that incorporates them are described in detail. The kind of strategies learned by RWM are based on the GPS problem solving method. Examples of strategies learned for different types of problems are given. RWM has learned good strategies for some problems which are difficult by human standards. © 1990
Five Dimensional Rotating Black Hole in a Uniform Magnetic Field. The Gyromagnetic Ratio
In four dimensional general relativity, the fact that a Killing vector in a
vacuum spacetime serves as a vector potential for a test Maxwell field provides
one with an elegant way of describing the behaviour of electromagnetic fields
near a rotating Kerr black hole immersed in a uniform magnetic field. We use a
similar approach to examine the case of a five dimensional rotating black hole
placed in a uniform magnetic field of configuration with bi-azimuthal symmetry,
that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming
that the black hole may also possess a small electric charge we construct the
5-vector potential of the electromagnetic field in the Myers-Perry metric using
its three commuting Killing vector fields. We show that, like its four
dimensional counterparts, the five dimensional Myers-Perry black hole rotating
in a uniform magnetic field produces an inductive potential difference between
the event horizon and an infinitely distant surface. This potential difference
is determined by a superposition of two independent Coulomb fields consistent
with the two angular momenta of the black hole and two nonvanishing components
of the magnetic field. We also show that a weakly charged rotating black hole
in five dimensions possesses two independent magnetic dipole moments specified
in terms of its electric charge, mass, and angular momentum parameters. We
prove that a five dimensional weakly charged Myers-Perry black hole must have
the value of the gyromagnetic ratio g=3.Comment: 23 pages, REVTEX, v2: Minor changes, v3: Minor change
Virtual Black Holes
One would expect spacetime to have a foam-like structure on the Planck scale
with a very high topology. If spacetime is simply connected (which is assumed
in this paper), the non-trivial homology occurs in dimension two, and spacetime
can be regarded as being essentially the topological sum of and
bubbles. Comparison with the instantons for pair creation of black holes
shows that the bubbles can be interpreted as closed loops of
virtual black holes. It is shown that scattering in such topological
fluctuations leads to loss of quantum coherence, or in other words, to a
superscattering matrix that does not factorise into an matrix and its
adjoint. This loss of quantum coherence is very small at low energies for
everything except scalar fields, leading to the prediction that we may never
observe the Higgs particle. Another possible observational consequence may be
that the angle of QCD is zero without having to invoke the
problematical existence of a light axion. The picture of virtual black holes
given here also suggests that macroscopic black holes will evaporate down to
the Planck size and then disappear in the sea of virtual black holes.Comment: 24p, LaTeX, 3 postscript figures included with epsf sent in a
seperate uuencoded fil
Stationary Einstein-Maxwell fields in arbitrary dimensions
The Einstein-Maxwell equations in D-dimensions admitting (D-3) commuting
Killing vector fields have been investigated. The existence of the electric,
magnetic and twist potentials have been proved. The system is formulated as the
harmonic map coupled to gravity on three-dimensional base space generalizing
the Ernst system in the four-dimensional stationary Einstein-Maxwell theory.
Some classes of the new exact solutions have been provided, which include the
electro-magnetic generalization of the Myers-Perry solution, which describes
the rotating black hole immersed in a magnetic universe, and the static charged
black ring solution.Comment: 26 page
Born-Infeld Theory and Stringy Causality
Fluctuations around a non-trivial solution of Born-Infeld theory have a
limiting speed given not by the Einstein metric but the Boillat metric. The
Boillat metric is S-duality invariant and conformal to the open string metric.
It also governs the propagation of scalars and spinors in Born-Infeld theory.
We discuss the potential clash between causality determined by the closed
string and open string light cones and find that the latter never lie outside
the former. Both cones touch along the principal null directions of the
background Born-Infeld field. We consider black hole solutions in situations in
which the distinction between bulk and brane is not sharp such as space filling
branes and find that the location of the event horizon and the thermodynamic
properties do not depend on whether one uses the closed or open string metric.
Analogous statements hold in the more general context of non-linear
electrodynamics or effective quantum-corrected metrics. We show how Born-Infeld
action to second order might be obtained from higher-curvature gravity in
Kaluza-Klein theory. Finally we point out some intriguing analogies with
Einstein-Schr\"odinger theory.Comment: 31 pages, 4 figures, LaTex; Some comments and references adde
Ultrarelativistic black hole in an external electromagnetic field and gravitational waves in the Melvin universe
We investigate the ultrarelativistic boost of a Schwarzschild black hole
immersed in an external electromagnetic field, described by an exact solution
of the Einstein-Maxwell equations found by Ernst (the ``Schwarzschild-Melvin''
metric). Following the classical method of Aichelburg and Sexl, the
gravitational field generated by a black hole moving ``with the speed of
light'' and the transformed electromagnetic field are determined. The
corresponding exact solution describes an impulsive gravitational wave
propagating in the static, cylindrically symmetric, electrovac universe of
Melvin, and for a vanishing electromagnetic field it reduces to the well known
Aichelburg-Sexl pp-wave. In the boosting process, the original Petrov type I of
the Schwarzschild-Melvin solution simplifies to the type II on the impulse, and
to the type D elsewhere. The geometry of the wave front is studied, in
particular its non-constant Gauss curvature. In addition, a more general class
of impulsive waves in the Melvin universe is constructed by means of a
six-dimensional embedding formalism adapted to the background. A coordinate
system is also presented in which all the impulsive metrics take a continuous
form. Finally, it is shown that these solutions are a limiting case of a family
of exact gravitational waves with an arbitrary profile. This family is
identified with a solution previously found by Garfinkle and Melvin. We thus
complement their analysis, in particular demonstrating that such spacetimes are
of type II and belong to the Kundt class.Comment: 11 pages, REVTeX
QCD Form Factors and Hadron Helicity Non-Conservation
Recent data for the ratio shocked the
community by disobeying expectations held for 50 years. We examine the status
of perturbative QCD predictions for helicity-flip form factors. Contrary to
common belief, we find there is no rule of hadron helicity conservation for
form factors. Instead the analysis yields an inequality that the leading power
of helicity-flip processes may equal or exceed the power of helicity conserving
processes. Numerical calculations support the rule, and extend the result to
the regime of laboratory momentum transfer . Quark orbital angular
momentum, an important feature of the helicity flip processes, may play a role
in all form factors at large , depending on the quark wave functions.Comment: 25 pages, 5 figure
Pair creation of anti-de Sitter black holes on a cosmic string background
We analyze the quantum process in which a cosmic string breaks in an anti-de
Sitter (AdS) background, and a pair of charged or neutral black holes is
produced at the ends of the strings. The energy to materialize and accelerate
the pair comes from the strings tension. In an AdS background this is the only
study done in the process of production of a pair of correlated black holes
with spherical topology. The acceleration of the produced black holes is
necessarily greater than (|L|/3)^(1/2), where L<0 is the cosmological constant.
Only in this case the virtual pair of black holes can overcome the attractive
background AdS potential well and become real. The instantons that describe
this process are constructed through the analytical continuation of the AdS
C-metric. Then, we explicitly compute the pair creation rate of the process,
and we verify that (as occurs with pair creation in other backgrounds) the pair
production of nonextreme black holes is enhanced relative to the pair creation
of extreme black holes by a factor of exp(Area/4), where Area is the black hole
horizon area. We also conclude that the general behavior of the pair creation
rate with the mass and acceleration of the black holes is similar in the AdS,
flat and de Sitter cases, and our AdS results reduce to the ones of the flat
case when L=0.Comment: 13 pages, 3 figures, ReVTeX
Attitudes toward westbound refugees in the East German press
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67107/2/10.1177_002200277001400303.pd
- …