5,153 research outputs found

    Effect of magnetic pulses on Caribbean spiny lobsters: implications for magnetoreception

    Get PDF
    ABSTRACT The Caribbean spiny lobster, Panulirus argus, is a migratory crustacean that uses Earth9s magnetic field as a navigational cue, but how these lobsters detect magnetic fields is not known. Magnetic material thought to be magnetite has previously been detected in spiny lobsters, but its role in magnetoreception, if any, remains unclear. As a first step toward investigating whether lobsters might have magnetite-based magnetoreceptors, we subjected lobsters to strong, pulsed magnetic fields capable of reversing the magnetic dipole moment of biogenic magnetite crystals. Lobsters were subjected to a single pulse directed from posterior to anterior and either: (1) parallel to the horizontal component of the geomagnetic field (i.e. toward magnetic north); or (2) antiparallel to the horizontal field (i.e. toward magnetic south). An additional control group was handled but not subjected to a magnetic pulse. After treatment, each lobster was tethered in a water-filled arena located within 200 m of the capture location and allowed to walk in any direction. Control lobsters walked in seemingly random directions and were not significantly oriented as a group. In contrast, the two groups exposed to pulsed fields were significantly oriented in approximately opposite directions. Lobsters subjected to a magnetic pulse applied parallel to the geomagnetic horizontal component walked westward; those subjected to a pulse directed antiparallel to the geomagnetic horizontal component oriented approximately northeast. The finding that a magnetic pulse alters subsequent orientation behavior is consistent with the hypothesis that magnetoreception in spiny lobsters is based at least partly on magnetite-based magnetoreceptors

    Oakleaf: an S locus-linked mutation of Primula vulgaris that affects leaf and flower development

    Get PDF
    •In Primula vulgaris outcrossing is promoted through reciprocal herkogamy with insect-mediated cross-pollination between pin and thrum form flowers. Development of heteromorphic flowers is coordinated by genes at the S locus. To underpin construction of a genetic map facilitating isolation of these S locus genes, we have characterised Oakleaf, a novel S locus-linked mutant phenotype. •We combine phenotypic observation of flower and leaf development, with classical genetic analysis and next-generation sequencing to address the molecular basis of Oakleaf. •Oakleaf is a dominant mutation that affects both leaf and flower development; plants produce distinctive lobed leaves, with occasional ectopic meristems on the veins. This phenotype is reminiscent of overexpression of Class I KNOX-homeodomain transcription factors. We describe the structure and expression of all eight P. vulgaris PvKNOX genes in both wild-type and Oakleaf plants, and present comparative transcriptome analysis of leaves and flowers from Oakleaf and wild-type plants. •Oakleaf provides a new phenotypic marker for genetic analysis of the Primula S locus. We show that none of the Class I PvKNOX genes are strongly upregulated in Oakleaf leaves and flowers, and identify cohorts of 507 upregulated and 314 downregulated genes in the Oakleaf mutant

    Two-photon photochemical long-period grating fabrication in hydrogenated photonic crystal fiber

    No full text
    We report on the photochemical fabrication of a long-period grating in photonic crystal fiber. The characteristic fluence value for inscription is an order of magnitude less than that for standard telecom fiber

    Study of localization in the quantum sawtooth map emulated on a quantum information processor

    Full text link
    Quantum computers will be unique tools for understanding complex quantum systems. We report an experimental implementation of a sensitive, quantum coherence-dependent localization phenomenon on a quantum information processor (QIP). The localization effect was studied by emulating the dynamics of the quantum sawtooth map in the perturbative regime on a three-qubit QIP. Our results show that the width of the probability distribution in momentum space remained essentially unchanged with successive iterations of the sawtooth map, a result that is consistent with localization. The height of the peak relative to the baseline of the probability distribution did change, a result that is consistent with our QIP being an ensemble of quantum systems with a distribution of errors over the ensemble. We further show that the previously measured distributions of control errors correctly account for the observed changes in the probability distribution.Comment: 20 pages, 9 figure

    Determining structural performance

    Get PDF
    An overview of the methods and concepts developed to enhance and predict structural dynamic characteristics of advanced aeropropulsion systems is presented. Aeroelasticity, vibration control, dynamic systems, and computational structural methods are four disciplines that make up the structural dynamic effort at LeRC. The aeroelasticity program develops analytical and experimental methods for minimizing flutter and forced vibration of aerospace propulsion systems. Both frequency domain and time domain methods were developed for applications on the turbofan, turbopump, and advanced turboprop. In order to improve life and performance, the vibration control program conceives, analyzes, develops, and demonstrates new methods for controlling vibrations in aerospace systems. Active and passive vibration control is accomplished with electromagnetic dampers, magnetic bearings, and piezoelectric crystals to control rotor vibrations. The dynamic systems program analyzes and verifies the dynamics of interacting systems, as well as develops concepts and methods for high-temperature dynamic seals. Work in this field involves the analysis and parametric identification of large, nonlinear, damped, stochastic systems. The computational structural methods program exploits modern computer science as an aid to the solutions of structural problems

    Extreme asteroids in the Pan-STARRS 1 Survey

    Get PDF
    Using the first 18 months of the Pan-STARRS 1 survey we have identified 33 candidate high-amplitude objects for follow-up observations and carried out observations of 22 asteroids. 4 of the observed objects were found to have observed amplitude Aobs1.0A_{obs}\geq 1.0 mag. We find that these high amplitude objects are most simply explained by single rubble pile objects with some density-dependent internal strength, allowing them to resist mass shedding even at their highly elongated shapes. 3 further objects although below the cut-off for 'high-amplitude' had a combination of elongation and rotation period which also may require internal cohesive strength, depending on the density of the body. We find that none of the 'high-amplitude asteroids' identified here require any unusual cohesive strengths to resist rotational fission. 3 asteroids were sufficiently observed to allow for shape and spin pole models to be determined through light curve inversion. 45864 was determined to have retrograde rotation with spin pole axes λ=218±10,β=82±5\lambda=218\pm 10^{\circ}, \beta=-82\pm 5^{\circ} and asteroid 206167 was found to have best fit spin pole axes λ=57±5\lambda= 57 \pm 5^{\circ}, β=67±5\beta=-67 \pm 5^{\circ}. An additional object not initially measured with Aobs>1.0A_{obs}>1.0 mag, 49257, was determined to have a shape model which does suggest a high-amplitude object. Its spin pole axes were best fit for values λ=112±6,β=6±5\lambda=112\pm 6^{\circ}, \beta=6\pm 5^{\circ}. In the course of this project to date no large super-fast rotators (Prot<2.2P_{rot} < 2.2 h) have been identified.Comment: 31 pages; accepted by A

    Spin waves in alloys at finite temperatures: application for FeCo magnonic crystal

    Full text link
    We study theoretically the influence of the temperature and disorder on the spin wave spectrum of the magnonic crystal Fe1c_{1-c}Coc_{c}. Our formalism is based on the analysis of a Heisenberg Hamiltonian by means of the wave vector and frequency dependent transverse magnetic susceptibility. The exchange integrals entering the model are obtained from the \emph{ab initio} magnetic force theorem. The coherent potential approximation is employed to treat the disorder and random phase approximation in order to account for the softening of the magnon spectrum at finite temperatures. The alloy turns out to exhibit many advantageous properties for spintronic applications. Apart from high Curie temperature, its magnonic bandgap remains stable at elevated temperatures and is largely unaffected by the disorder. We pay particular attention to the attenuation of magnons introduced by the alloying. The damping turns out to be a non-monotonic function of the impurity concentration due to the non-trivial evolution of the value of exchange integrals with the Co concentration. The disorder induced damping of magnons is estimated to be much smaller than their Landau damping.Comment: submitted to PR

    Immunocytochemical Demonstration of Na + ,K + -ATPase in Internodal Axolemma of Myelinated Fibers of Rat Sciatic and Optic Nerves

    Full text link
    We used postembedding electron microscopic immunocytochemistry with colloidal gold to determine the ultrastructural distribution of Na + ,K + -ATPase in the sciatic and optic nerves of the rat. Using a polyclonal antiserum raised against the denatured catalytic subunit of brain Na + ,K + -ATPase, we found immunoreactivity along the internodal axolemma of myelinated fibers in both nerves. This antiserum did not produce labeling of nodal axolemma. These results suggest that an important site of energy-dependent sodium-potassium exchange is along the internodal axolemma of myelinated fibers in the mammalian CNS and PNS and that there may be differences between the internodal and nodal forms of the enzyme.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66444/1/j.1471-4159.1991.tb02114.x.pd

    Обоснование актуальности использования в трансмиссии геохода эксцентриково-циклоидального зацепления

    Get PDF
    Рассматривается состояние вопроса по темпам формирования подземного пространства в России. Проводится анализ недостатков имеющегося проходческого оборудования (щиты, комбайны). Отмечается, что перспективным способом проведения горных выработок является геовинчестерная технология, базовым функциональным элементом которой является геоход. Утверждается, что одной из ключевых систем геохода, определяющей его работоспособность, является трансмиссия. Отмечается, что реализованная в настоящее время в опытном образце геохода трансмиссия с гидроцилиндрами, имеет, как свои достоинства, так и недостатки. Это не позволяет считать трансмиссию с гидроцилиндрами оптимальным решением для её использования, при разработке геоходов нового поколения. Проводится обзор различных видов зубчатых зацеплений и делаются выводы о перспективности их применения в трансмиссии геохода
    corecore