46 research outputs found

    Network biology : applications in medicine and biotechnology

    Get PDF
    The concept of systems biology emerged over the last decade in order to address advances in experimental techniques. It aims to characterize biological systems comprehensively as a complex network of interactions between the system's components. Network biology has become a core research domain of systems biology. It uses a graph theoretic approach. Many advances in complex network theory have contributed to this approach, and it has led to practical applications spanning from disease elucidation to biotechnology during the last few years. Herein we applied a network approach in order to model heterogeneous biological interactions. We developed a system called megNet for visualizing heterogeneous biological data, and showed its utility by biological network visualization examples, particularly in a biomedical context. In addition, we developed a novel biological network analysis method called Enriched Molecular Path detection method (EMPath) that detects phenotypic specific molecular paths in an integrated molecular interaction network. We showed its utility in the context of insulitis and autoimmune diabetes in the non-obese diabetic (NOD) mouse model. Specifically, ether phosholipid biosynthesis was down-regulated in early insulitis. This result was consistent with a previous study (Orešič et al., 2008) in which serum metabolite samples were taken from children who later progressed to type 1 diabetes and from children who permanently remained healthy. As a result, ether lipids were diminished in the type 1 diabetes progressors. Also, in this thesis we performed topological calculations to investigate whether ubiquitous complex network properties are present in biological networks. Results were consistent with recent critiques of the ubiquitous complex network properties describing the biological networks, which gave motivation to tailor another method called Topological Enrichment Analysis for Functional Subnetworks (TEAFS). This method ranks topological activities of modules of an integrated biological network under a dynamic response to external stress. We showed its utility by exposing an integrated yeast network to oxidative stress. Results showed that oxidative stress leads to accumulation of toxic lipids

    SyNDI : Synchronous network data integration framework

    Get PDF
    Background: Systems biology takes a holistic approach by handling biomolecules and their interactions as big systems. Network based approach has emerged as a natural way to model these systems with the idea of representing biomolecules as nodes and their interactions as edges. Very often the input data come from various sorts of omics analyses. Those resulting networks sometimes describe a wide range of aspects, for example different experiment conditions, species, tissue types, stimulating factors, mutants, or simply distinct interaction features of the same network produced by different algorithms. For these scenarios, synchronous visualization of more than one distinct network is an excellent mean to explore all the relevant networks efficiently. In addition, complementary analysis methods are needed and they should work in a workflow manner in order to gain maximal biological insights. Results: In order to address the aforementioned needs, we have developed a Synchronous Network Data Integration (SyNDI) framework. This framework contains SyncVis, a Cytoscape application for user-friendly synchronous and simultaneous visualization of multiple biological networks, and it is seamlessly integrated with other bioinformatics tools via the Galaxy platform. We demonstrated the functionality and usability of the framework with three biological examples - we analyzed the distinct connectivity of plasma metabolites in networks associated with high or low latent cardiovascular disease risk; deeper insights were obtained from a few similar inflammatory response pathways in Staphylococcus aureus infection common to human and mouse; and regulatory motifs which have not been reported associated with transcriptional adaptations of Mycobacterium tuberculosis were identified. Conclusions: Our SyNDI framework couples synchronous network visualization seamlessly with additional bioinformatics tools. The user can easily tailor the framework for his/her needs by adding new tools and datasets to the Galaxy platform.</p

    Detection of Molecular Paths Associated with Insulitis and Type 1 Diabetes in Non-Obese Diabetic Mouse

    Get PDF
    Recent clinical evidence suggests important role of lipid and amino acid metabolism in early pre-autoimmune stages of type 1 diabetes pathogenesis. We study the molecular paths associated with the incidence of insulitis and type 1 diabetes in the Non-Obese Diabetic (NOD) mouse model using available gene expression data from the pancreatic tissue from young pre-diabetic mice. We apply a graph-theoretic approach by using a modified color coding algorithm to detect optimal molecular paths associated with specific phenotypes in an integrated biological network encompassing heterogeneous interaction data types. In agreement with our recent clinical findings, we identified a path downregulated in early insulitis involving dihydroxyacetone phosphate acyltransferase (DHAPAT), a key regulator of ether phospholipid synthesis. The pathway involving serine/threonine-protein phosphatase (PP2A), an upstream regulator of lipid metabolism and insulin secretion, was found upregulated in early insulitis. Our findings provide further evidence for an important role of lipid metabolism in early stages of type 1 diabetes pathogenesis, as well as suggest that such dysregulation of lipids and related increased oxidative stress can be tracked to beta cells

    Correlation of gene expression and protein production rate - a system wide study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on <it>Saccharomyces cerevisiae </it>chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus <it>Trichoderma reesei </it>(<it>Hypocrea jecorina</it>) that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype.</p> <p>Results</p> <p>We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of <it>T. reesei</it>. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR). We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response.</p> <p>Conclusions</p> <p>Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR).</p

    Metabolic Regulation in Progression to Autoimmune Diabetes

    Get PDF
    Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede β-cell autoimmunity in humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic related pathways as therapeutic targets to prevent diabetes

    Network Biology:Applications in medicine and biotechnology: Dissertation

    No full text

    Integroitujen biologisten verkkojen tutkiminen

    No full text
    Nykyajan biologinen tieto on erittäin hajanaista. Sitä säilytetään eri tietokannoissa ja se esitetään eri formaateissa. On olemassa paljon biologisia tietokantoja hyvine visualisointityÜkaluineen. Tästä huolimatta on olemassa erittäin vähän tyÜkaluja, joiden avulla tietoa pystytään hakemaan useasta tietokannasta. Tämän takia on erittäin vaikeata saada selvää kokonaiskuvaa monimutkaisesta biologisesta tiedosta. Tässä tyÜssä kehitämme Java-sovelluksen, jonka avulla voimme hakea useasta biologisesta tietokannasta. Viimeaikaisten tutkimusten perusteella hierarkinen modulaarisuus vallitsee aineenvaihduntaverkoissa. Tämän takia ne ovat erittäin robusteja. Emme kuitenkaan tiedä miten tämä rakenne muuttuu, kun lisäämme aineenvaihduntaverkkoihin uusia biologisia verkkoja. Käytämme Sammonin projektioalgoritmia tutkiaksemme biologisten verkkojen rakennetta Leipurin hiivassa. Aluksi klusteroimme aineenvaihduntaverkkoja. Tämän jälkeen lisäämme aineenvaihduntaverkkoihin proteiini-proteiini vuorovaikutusverkkoja. Korkeilla hierarkiatasoilla tapahtuu voimakasta sekoitusta. Alemmilla hierarkiatasoilla sekoitukset ovat huomattavasti heikompia. Korkeiden ja matalien hierarkiatasojen välillä ei tapahdu ollenkaan sekoitusta

    Investigating the structure of integrated biological networks:Master's thesis

    No full text

    Investigating the structure of integrated biological networks:Master's thesis

    No full text
    corecore