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Abstract 
The concept of systems biology emerged over the last decade in order to address 
advances in experimental techniques. It aims to characterize biological systems 
comprehensively as a complex network of interactions b etween t he s ystem’s 
components. Network b iology has become a core r esearch domain o f systems 
biology. It uses a graph theoretic approach. Many advances in complex network 
theory have contributed to this approach, and it has led to practical applications 
spanning from disease elucidation to biotechnology during the last few years. 

Herein we applied a network approach in order to model heterogeneous biological 
interactions. We developed a system called megNet for visualizing heterogeneous 
biological data, and showed its utility by biological network visualization examples, 
particularly in a biome dical context. In addition, we developed a novel biologica l 
network a nalysis method ca lled E nriched Molecular Path d etection m ethod ( EM-
Path) t hat detects phenotypic specific molecular paths in a n i ntegrated molecular 
interaction network. We showed its utility in the context of insulitis and autoimmune 
diabetes in the non-obese diabetic (NOD) mouse model. Specifically, ether phosho-
lipid b iosynthesis was down-regulated in early insulitis. This result was consistent 
with a previous study (Oreši  et al., 2008) in w hich serum metabolite samples were 
taken from children who later progressed to type 1 diabetes and from children who 
permanently remained healthy. As a result, ether lipids were diminished in the type 1 
diabetes pr ogressors. Also, in t his thes is we performed topological ca lculations t o 
investigate whether ubiquitous complex network properties are present in biological 
networks. R esults were consistent with r ecent critiques of t he ubiquitous complex 
network pr operties describing t he biological net works, which gave motivation t o 
tailor another method called Topological Enrichment Analysis for Functional Sub-
networks (TEAFS). This method ranks topological activities of modules of an inte-
grated biological network under a dynamic response to external stress. We showed 
its utility b y exposing a n i ntegrated yeast network to oxidat ive str ess. Results 
showed that oxidative stress leads to accumulation of toxic lipids. 
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Tiivistelmä 
Järjestelmäbiologian käsite syntyi yli kymmenen vuotta si tten vastauksena ko-
keellisten menetelmien kehitystyöhön. T ämä lähestymistapa pyrkii kuvaamaan 
biologisia järjestelmiä kattavasti kompleksisena vuorovaikutusverkkona, joka 
koostuu j ärjestelmän k omponenttien välisistä vuorovaikutuksista. Verkkobiolo-
giasta on tullut tärkeä järjestelmäbiologian tutkimuskohde, ja se k äyttää graafi-
teoreettista lähestymistapaa. Kompleksisten verkkojen t eorian kehitystyö on 
edistänyt tätä lähestymistapaa, ja se o n j ohtanut moniin käytännön sovelluksiin 
aina sairauksien selventämisestä bioteknologiaan viimeisten parin vuoden aikana. 

Tässä väitöskirjassa sovellettiin verkkobiologista lähestymistapaa heterogeenisten 
biologisten vuorovaikutusten mallintamiseen. Siinä kehitettiin heterogeenisen 
biologisen tiedon vi sualisointityökalu megNet, jonka hyödyllisyys osoitettiin biolo-
gisten verkkojen visualisointiesimerkein, e rityisesti biolääketieteellisessä k on-
tekstissa. Tämän lisäksi väitöstutkimuksessa kehitettiin uusi b iologisten verkkojen 
analysointimenetelmä, rikastettujen molekyylipolkujen havaitsemismenetelmä, 
joka havaitsee fenotyyppikohtaisia molekyylipolkuja integroidusta molekyyli-
vuorovaikutusverkosta. Tämän menetelmän hyödyllisyys osoitettiin insuliitiksen 
ja autoimmuunidiabeteksen kontekstissa käyttäen laihojen diabeteshiirien mallia. 
Erityisesti eetterifosfolipidibiosynteesi oli alisäädelty insuliitiksen varhaisessa 
vaiheessa. Tämä tulos oli yhteensopiva aikaisemman tutkimuksen (Oreši  et al., 2008) 
kanssa, jossa mitattiin myöhemmin tyypin 1 diabetekseen sairastuneiden lasten ja 
pysyvästi terveiden lasten seerumin aineenvaihduntatuotteidenpitoisuuksia. Tässä 
tutkimuksessa havaittiin, että eetterilipidipitoisuudet olivat sairastuneilla lapsilla alhai-
semmat kuin t erveillä lapsilla. Tässä väitöskirjassa laskettiin myös topologialaskuja, 
joiden avulla voitiin s elvittää, noudattavatko b iologiset verkot kaikkialla läsnä 
olevia kompleksisten verkkojen ominaisuuksia. Tulokset olivat yhteensopivia kaik-
kialla läsnä olevien kom pleksisten verkkojen ominaisuuksiin viime aikoina koh-
distuneen kritiikin kanssa. Tämä loi m otivaatiota räätälöidä topologista rikasta-
misanalyysia funktionaalisille a liverkoille, joka etsii topologisesti aktiivisimmat 
moduulit integroidusta b iologisesta verkosta dynaamisen stressin alaisuudessa. Tä-
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män menetelmän hyödyllisyys osoitettiin altistamalla integroitu hiivaverkko oksida-
tiiviselle stressille. Tulokset osoittivat, että oksidatiivinen stressi aiheuttaa toksisten 
lipidien kasaantumisen. 
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Preface 
This the sis was carried ou t in the Q uantitative Biology a nd Bioin formatics 
(QBIX) group at VTT Technical Research Centre of Finland from 2006 to 2010. 
The ma in funding sources were Na tional Graduate School in Informational and 
Structural Biology (IS B) t hat provided me t hree-year graduate studen t grant 
from 2007 t o 2010, T RANSCENDO pr oject of t he Tekes MASI P rogram that 
funded my six-month exchange visit to International Computer Science Institute 
(ICSI) Berkeley (CA, USA) in 2006 and 2007, a nd DIAPREPP EU FP7 project 
that provided additional funding for my research. I am grateful t o all of t hese 
funding organizations. 

I am indebted to many people that have contributed to this thesis both scientif-
ically and non -scientifically. The biggest gratitude goe s t o m y in structor R e-
search Professor Matej Oreši  for making me a sc ientist. Without his persistent 
encouragement and enthusiasm I would never have dared to embark on my PhD 
thesis. During the whole thesis work he h as professionally supervised my work 
on daily basis and maintained scientifically stimulating atmosphere in the whole 
QBIX group and provided solid funding for us. Also, I am grateful to my super-
visor  Professor  Kimmo  Kaski,  Head  of  the  Centre  of  Excellence  in  Computa-
tional C omplex Systems Research, Vice D ean of Aalto S chool of Science, for 
accepting me as a PhD student at Aalto University, and for his invaluable help in 
finalizing the thesis and wrapping up everything into covers, and also for helping 
me with many practical issues. Also, I would like to thank the pre-examiners of 
this thesis Docent Juho Rousu and Docent Tero Aittokallio for carefully reading 
the manuscript and for their invaluable comments that helped improve the quali-
ty  of  the  thesis.  I  am  also  grateful  to  Professor  Samuel  Kaski  and  Dr.  Jari  
Saramäki for b eing on my advisory board in the ISB graduate school. Both of 
them have provided invaluable comments in annual meetings. From VTT man-
agement level I would like to th ank T echnology Manager Dr . Richard Fage r-
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ström, Vice President (R&D) Dr. Anu Kaukovirta-Norja, former Vice President 
(R&D) (currently Vice President, Business Development) Dr. Juha Ahvenainen, 
Professor Hans Söderlund, and P rofessor Johanna Buchert for providing excel-
lent research environment. 

The QBIX group was founded by Matej, and in the beginning of 2009 it w as 
split in t wo g roups: M etabolomics gr oup a nd Bio systems M odeling gro up. I 
work in the latter group. I would like to t hank a ll people from t hese groups for 
excellent scientific company. Especially, I would l ike to thank my group leader 
Dr. Marko Sysi-Aho a nd my former group leaders Dr. Mika Hilvo, Mr. Pekka 
Savolahti and Dr. Kim Ekroos for their continuous support and for pushing me 
to finish my PhD thesis.  Also,  I  am deeply indebted to my close colleague Dr.  
Venkata Gopalacharyulu Peddinti for his excellent work dur ing the years, espe-
cially his contribution to megNet’s databases has been crucial. Also, many dis-
cussions with him have been very invaluable opening up always new scientific 
aspects, and he h as been alw ays very helpful and showed capabil ity to explain 
challenging issues in s imple way. I would also like to thank my other close col-
league Laxmana Rao Yetukuri for fruitful collaboration on lipid pathway recon-
struction, and c ontinuously pushing me t o f inish my PhD thesis. Also, I would 
like to thank Dr. Tuulia Hyötyläinen and Dr. Tuulikki Seppänen-Laakso for their 
collaboration on li pidomics studies, a nd Ms. Sa ndra Castillo, Mr . Artturi Koi-
vuniemi, Mr. Matti Kankainen, Dr. Tijana Marinkovi , Dr. Jing T ang, and Mr. 
Brudy H an Z hao f or excellent company i n daily life a t VTT, a nd M s. Anna-
Kaarina Hakala and Ms. Si rpa Nygrén for their s ecretarial help with practical 
issues. 

I have continuously b een exposed to working with people from different 
background at VTT, which has been very rewarding. First of all, I would like to 
thank Dr. Jyrki Lötjönen and Mr. Jussi Mattila from VTT Signal and Image Pro-
cessing group, as well the other members of the group for fruitful collaboration 
on studying biological networks in the context of m edical images. Especially, I 
would like to thank Jussi for developing a desktop user interface for megNet and 
teaching me many useful aspects in software engineering. Also, I would like to 
thank Research Professor Merja Penttilä, Dr. Laura Ruohonen, Dr. Mikko Arvas, 
Dr. Juha-Pekka Pitkänen, Dr. Merja Oja, Dr. Paula Jouhten and Dr. Eija Rintala 
from VTT Cell Factory for collaboration on studying biological networks in the 
context of metabolic eng ineering, and Dr. Harri S iitari, Dr. A rho V irkki, Dr. 
Vidal Fey, Dr. Sampo Sammalisto and Dr. Timo Pulli for collaboration efforts to 
commercialize VTT’s bioinformatics tools. 
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This thesis is composed of s ix jointly publ ished scien tific pub lications. I 
would like to thank all coauthors of these publications. I have mentioned most of 
them earlier in this preface. Those not mentioned I would like to thank Dr. Eran 
Halperin, Dr. Catherine Bounsaythip, Dr. Teemu Kivioja, Dr. Jaakko Hollmén, 
Mr. Jarkko Miettinen, Dr. Antti Pesonen, and Dr. Vidya R. Velagapudi for their 
contribution, especially Eran for supervising my work while visiting his group at 
ICSI Berkeley, and Jaa kko f or supervising my Mast er’s thesis which initiated 
the research topic of this thesis. 

In addition, I would like to thank all other people of t his world. We are com-
posed of a complex network of interactions, so a ll of you have dir ectly or indi-
rectly interacted with me, and thus made this thesis a reality. Thank you all very 
much! 
 
 
September 23, 2011, Espoo, Finland 

 
Erno Lindfors 
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Author’s contribution 
I. Publication I introduces the Enriched M olecular Path detection method 

(EMPath), an d shows i ts utility in the context of type 1 diabetes mouse 
models leading to interesting findings in terms of medical biology. The au-
thor of this t hesis designed the method together with Eran Halperin (EH). 
The author  implemented the method,  and used it  in  a  type 1 diabetes  case 
study. The author and Matej Oreši  (MO) wrote the main parts of the man-
uscript. Also, Peddinti V. Gopalacharyulu (PVG) and EH contributed to the 
writing. PVG designed and p erformed functional and gene set enrichment 
analyses for the type 1 diabetes case study. MO interpreted the results of the 
type 1 diabetes case study. EH and MO supervised and conceived the study. 

II. Publication II introduces a heterogeneous data integration and visualization 
system called megNet. The utility of t his system is demonstrated by two ex-
amples: an e xample in w hich there is c ross-talk1 between two different 
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1 The concept of cr oss-talk wil l be used widely in th is thesis. In broad sense, this con -
cept means connections between different biological processes (e.g. stages of metabo-
lism). In usual case, more than one ‘omics’ technologies are involved in this , for ex-
ample protein-protein interactions can make signaling between different stages of me-
tabolism or between transcriptional regulation and metabolism. 
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ceived and sup ervised the study, interpreted the results and contributed to 
the writing. 
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tances used in the megNet’s network. It contains three practical examples: 
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the structure of an integrated metabolic and protein-protein interaction net-
work, and a context based mapping example demonstrating how d istances 
between biological entities change based on the biological context. The au-
thor designed the network representation and distance matrix, implemented 
the Sammon’s mapping me thod, and cre ated the pra ctical examples. The 
author and CB wrote the main parts of the manuscript. All authors contrib-
uted to the writing. PVG provided biological details of the data. JH partici-
pated in discussion of mapping methods. MO conceived and supervised the 
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V. Publication V describes  the  latest  status  of  the  megNet  system.  It  extends  
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test of the TEA FS method and contributed to the writing. PVG developed 
the main ideas and implemented parts of the TEAFS method, performed the 
data analyses a nd wrote t he ma nuscript. Vidya R. Velagapudi ( VRV) p er-
formed metabolic experiments a nd da ta analysis, and wr ote the experi-
mental methods a nd biologi cal de tails in the m anuscript. PVG and V RV 
contributed equally to this publication. EH provided ideas for the statistical 
test, and contributed to the writing. MO conceived and supervised the study 
and contributed to the writing. 
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2 This name is based on the inventors of the megNet system: Matej Oreši , Erno Lindfors, 
Peddinti V. Gopalacharyulu. 



1. Introduction 

16 

1. Introduction 
The systems biology approach considers the biological system such as cell as a 
holistic system that comprises several types of molecules and in teractions (Ide-
ker et a l., 2001; Kitano 2002a, b). T his a pproach has been developed over the 
past decade, with network biology emerging as one of its core domains (Chuang 
et al., 2010). The network approach has already led to practical applications for 
example in disease elucidation (C huang et al., 2007; I deker & S haran, 2008; 
Schadt, 2009) and in biotechnology (Luscombe et al., 2004). The basic idea is to 
model biological phenomena as networks in whi ch nodes are biological entities 
(e.g. proteins, genes, metabolites) a nd edges interactions (e.g. protein-protein 
interactions, metabolic reactions). These methods are based on advances in com-
plex network methods across many fields (Barabási & Albert, 1999; Shen-Orr et 
al., 2002; Milo e t al., 2002, 2004). Ubiquitous complex network properties 
stemmed from this work have lately obtained some critiques but they have re-
mained a s a powerful framework for network b iology (Lima-Mendez & Helden, 
2009). 

One challenge of systems biology is the heterogeneity of biological data: there 
have been m any advances in biological measurement techniques over the past 
decade, which has generated a huge a mount of heterogeneous b iological data 
(Demir et al., 2010). In order to translate this into practical utility, it is necessary to 
integrate data from various sources into an integrated platform and enable an easy 
visualization of this data (Gehlenborg et al., 2010; O’Donoghue et al., 2010). 

1.1 Aims of the thesis 

The aim of this thesis is to address the a bove-mentioned challenges of systems 
biology. More specifically the main aims are listed below, and they are summa-
rized in Figure 1.1. 
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 We set up a system called megNet for visualizing heterogeneous biolog-
ical data in order to model various types of biological interactions as ho-
listic networks (Publications II–V) and assign an appropriate distance 
metric for the biological entities (Publication IV). More specifically, the 
author o f this the sis has de signed and im plemented m ost of the algo-
rithm logic of this system. Also, he im plemented the first desktop user 
interface of this system, and a web interface for taking input parameters 
from the user. The practical utility of this system is demonstrated first by 
a cross-talk example via different stages of y east metabolism (Publica-
tion II) and by a context based mapping example in a yeast metabolic 
network (Publication III). Then we used similar approaches to study bi-
ological networks in the context of medical images, and we found inter-
actions that could po ssibly explain o ur previous associations between 
lipidomics profiles and medical image parameters (Publication V). 

 As a main me thodological c ontribution we de velop a graph theoretic 
method called Enriched Molecular Path detection method (EMPath). We 
show the utility of this method by using it in the context of type 1 diabe-
tes mouse models leading to interesting results in terms of medical biol-
ogy (Publication I). 

 This thesis contributes to topological analyses of biological networks. 
We first performed topological calculations on a generic yeast metabolic 
network (Publication III), and then on reconstructed yeast networks un-
der dynamic stress (Publication VI) to investigate whe ther ubiquitous 
complex network properties are present in these networks. These results 
showed that these laws are not present, which is consistent with the re-
cent critiques to them. It thus indicated that we cannot gain our biologi-
cal understanding much from generic topological studies and t hus gave 
motivation to tailor the Topological Enrichment Analysis for Functional 
Subnetworks method (TEAFS) so that it analyzes modules of networks. 
This method was developed in Publication VI. In this publication we 
showed the utility of this method by exposing a yeast biological network 
to oxidative stress. As a re sult we found that toxic lipids were accumu-
lated under dynamic r esponse t o oxidative stress, which was validated 
by in-house metabolomic a nalysis. I n the development of t his method 
the author of this t hesis pr ovided help in network construction, a nd i n 
statistical and topological calculations. 
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Figure 1.1. Schematic diagram summarizing the main aims of this thesis. 
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2. Literature review 
In order to better understand the background of network biology, in this chapter 
we describe how it has evolved during the l ast few decades. W e can r oughly 
divide this process in three main parts as illustrated in Figure 2.1. In the first part 
solid theory for complex networks was created. In the beginning not much com-
putational resources were available. Some preliminary models were created, but 
they we re mainly ba sed on in tuition while lacking pra ctical e vidence. Then 
gradually more com putational powe r became a vailable. This enabled t esting 
models on r eal data, which introduced ubiquitous c omplex network properties 
across many f ields. In t he s econd part a huge a mount of experimental data be-
came available. This enabled considering several components simultaneously as 
a holistic s ystem le ading t o ‘systems biology’ ( Ideker et al., 2001; Kitano 
2002a, b). During the last few years these models have been used in real biologi-
cal contexts. This has led to some critiques towards the ubiquitous complex net-
work properties. However, specific tools and concepts of complex network theo-
ry have remained as a powerful framework in network biology leading to many 
practical applications. 
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Complex
network theory

• most networks
tacitly believed to
be random

• lack of biological
data and real
evidence

• computational
power available
and ubiquitous
complex network
properties considered

• experimental data
and computational
power became
available

• the concept of 
systems biology
introduced

• models used in real
biological contexts

• ubiquitous complex network
properties criticized

• powerful framework
remains in network biology

• practical applications
emerging

Biological data Contemporary 
biological applications

1999 2005… 1950 2030 …  

Figure 2.1. Main parts of network biology. 

2.1 Complex network theory 

During the last decade there have been many advances in complex network theo-
ry (Albert & Barabási, 2002). In these efforts phenomena from many fields are 
modeled by networks. In biology these networks comprise nodes that are biolog-
ical entities (e.g. proteins, metabolites) and edges that are interactions (e.g. pro-
tein-protein interactions, metabolic reactions). 

Until 1999 most networks were tacitly believed to follow an Erd s-Rényi ran-
dom network model ( Erd s & Rényi, 1959, 1960). Math ematical details of this 
model are described in Section 3.3. Briefly the idea is th at nodes are connected 
randomly to each other. However, the assumption that most networks follow this 
model was mainly bas ed on in tuition: the re were not practical appl ications to 
validate this assumption. 

In the beginning of this millennium more computational power became avail-
able, which enabled t esting models on r eal data. I t led t o a power-law degree 
distribution model which was first demonstrated by practical e xamples fro m 
outside biology (Barabási & Albert, 1999) and then also in biological networks 
such as in metabolic networks (Jeong et al., 2000) and in protein-protein interac-
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tion ne tworks (J eong e t a l., 2001; Wagner, 2001; Giot et a l., 2003; Li et a l., 
2004). T hen another model call ed hierarchical network model was in troduced 
(Ravasz et al., 2002; Ravasz & Barabási, 2003), and it was shown that biological 
networks such as metabolic networks (Ravasz et a l., 2002) and pro tein-protein 
interaction networks ( Yook e t al., 2004) fo llow this mode l, a s we ll many net-
works from outside biology (Ravasz & Barabási, 2003). Therefore, some scientists 
considered the power-law degree distribution and hierarchical models as ubiqui-
tous c omplex network properties, since they were applied a cross many f ields. 
The mathematical details of these models are also described in Section 3.3. 

The ubiquitous complex network properties introduced important concepts for 
network biology. F or example robustness: a power-law network is robust to a 
random attack to a node and lethal to a targeted attack to a highly connected hub 
node (Jeong et al., 2000, 2001). The network can thus keep its structure if a ran-
dom node is collapsed, but it ge ts fragmented if a highly connected hub node is 
collapsed. Another important concept is modularity: biological networks tend be 
organized in modules, a nd inside each module biological entities interact with 
each o ther in order to c arry out a di stinct b iological f unction (Hartwell e t al., 
1999; Qi & Ge, 2006). However, this is not usually ideally the case, for example 
there are connections between modules via hierarchy levels (Ravasz et al., 2002; 
Ravasz & Barabási, 2003). Also, as an important concept to study the biological 
meaning of modules a network motif3 was introduced as a significantly recurring 
pattern in a network about ten years ago, first by showing that a transcriptional 
interaction network in Escherichia coli is composed of biologically meaningful 
motifs (Shen-Orr et a l., 2002). T hen this concept was generalized b y showing 
that complex networks fr om m any o ther fields (e.g. neurology, ecology, and 
engineering) are also composed of meaningful motifs (Milo et al., 2002). A few 
years later the unive rsality of this c oncept was shown: sim ilar motifs a cross 
many fi elds were found, for example i n t ranscription net works in m icro-
organisms, World Wide Web and social networks, and word adjacency networks 
from different languages (Milo et a l., 2004). However, the concept of network 
motif has been criticized by stating that some motifs tend to be results from spa-
tial clustering rather than ubiquitous evolutionary properties (Artzy-Randrup et 
al., 2004). 

                                                   

3 Analogously the con cept of mot if h ad been used in sequence an alysis as recurring 
nucleotide or amino-acid patterns. 
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A growth and pr eferential att achment process is a nother interesting concept 
related to the ubiquitous complex network properties (Yule, 1925; Simon, 1955; 
Price, 1976; Barabási & Albert, 1999; Newman, 2005). It is a stochastic process 
that is assumed to generate the power-law degree distribution model. In brief, it 
is based on the following two assumptions. 

1. The network grows over time: new nodes continuously join the network. 

2. A new node prefers to link to a highly connected node: the higher num-
ber of links a node has the higher probability is that it gets a new link. 

In a network biology r eview B arabási & Olt vai (2004) they explain how t he 
growth a nd p referential a ttachment process is associated with gene duplication 
in protein-protein interaction networks. Briefly, the idea is that in gene duplica-
tion one or several genes are copied twice. This is manifested as a new interact-
ing partner in protein-protein interaction network. The more l inks a protein has 
the higher probability is that it in teracts with a protein of d uplicated genes, and 
thus gets a new interacting partner. 

In Albert & Barabási (2002) they mention that the growth and preferential at-
tachment process could generate networks also i n other fields. For example, 
when we create a new page in the World Wide Web, we tend to create a link to a 
popular page (e.g. Google Web Search page). Therefore a highly connected page 
tends to get linked to a new page when the World Wide Web grows. In a citation 
network a highly cited publication tends t o get a ne w citation, since it is well 
known and thus has scientific credibility. 

2.2 Biological data 

Gradually early this millennium many high-throughput technologies emerged for 
many types of interactions. As a result, we have a huge amount of heterogeneous 
biological interaction d ata available, which has revolutionized t he b iological 
research. Traditionally we were interested in single molecules (e.g. genes), 
whereas now i t is possible t o con sider several com ponents simultaneously i n 
integrated manner via several t ypes of interactions. This approach has led t o a 
new concept called ‘systems biology’ (Ideker et al., 2001; Kitano 2002a, b). 

As high-throughput t echnology examples, two techniques for detecting pro-
tein-protein interactions were developed: a yeast two-hybrid method (Uetz et al., 
2000; Ito e t al., 2000; Fields, 2005) and affinity purification coupled with mass 
spectrometry (Ho et a l., 2002; Gavin e t a l., 2002, 2006; Kr ogan et a l., 2006). 
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Both of these technologies enable detecting thousands of protein-protein interac-
tions s imultaneously. T he former detects binary in teractions. T he later detects 
interaction complexes. These methods have generated a huge amount of protein-
protein in teraction d ata. Man y d atabases h ave been e stablished to colle ct this 
data, for example DIP (X enarios et al., 2002), MINT (Ceol e t al., 2010), a nd 
BIND ( Bader et al., 2003). T hough t hese d atabases provide promising initial 
framework for studying networks in protein level, they still have many challeng-
es ahead, for example it has been estimated that protein i nteraction maps are 
50% complete for a model organism Saccharomyces cerevisiae yeast and 10% 
complete for human, and t hey contain a high number of f alse-positive i nterac-
tions (Hart et al., 2006). 

During the last 10–20 years many genomes have been completed, most notably 
the human genome project (Lander et al., 2001; Venter et al., 2001) . Many or-
ganism specific metabolic model s ha ve been constructed from these genomes. 
For example, KEGG is a database comprising metabolic pathway maps for more 
than one hundred species (Kanehisa et al., 2004). Also, many genome-wide met-
abolic models have been constructed for model organisms such as yeast Saccha-
romyces cerevisiae (Förster et al., 2003; Duarte et al., 2004; Herrgård et al., 2008), 
Escherichia coli (Feist & Palsson, 2008), mouse (Sheikh et a l., 2005; Quek & 
Nielsen, 2008), and also for human (Duarte et al., 2007; Ma et al., 2007). 

Also, many microarray technologies emerged by the early millennium (Schul-
ze & Downward, 2001). This has enabled simultaneous study of several genes in 
a phenotypic context by taking gene expression measurements for example from 
disease and healthy samples. Some systematic efforts have been made to collect 
this data. For example, GEO is a public database where biologists ca n sub mit 
their gene expression exp eriments (Barrett et a l., 2009). As a r esult, the re are 
several thousand s of samples from different conditions that researchers can 
freely use. In addition, several other b iological databases have been established 
during the l ast decade. More extensive list of the se databases is pr esented for 
example in Demir et al. (2010). 

2.3 Contemporary biological applications 

Since the concept of systems biology has existed for a while, biologically mean-
ingful a pplications have emerged, which i n t urn has shed also s ome critiques 
towards the ubiquitous complex network properties that were made in the early 
times of c omplex network theo ry. Especially, the pr esence of the power-law 
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degree distribution4 in biolog ical networks has been criticized. For example, in 
Khanin & Wit  (2006) they took a rigorous approach to this  question.  This  was 
based on an observation that it is usually tempting to come up with a conclusion 
that a distribution follow s the p ower-law always when i t is decreasing. They 
used a maximum likelihood method to investigate rigorously whether distribu-
tions of 1 0 b iological networks ( e.g. protein-protein i nteractions, gene i nterac-
tions, synthetic lethal interactions, metabolic interactions) follow the power-law. 
As a result, none of these distributions f ollowed ideally the p ower-law degree 
distribution model. In a ddition, they inve stigated how consi stent t he same 10 
biological net works ar e wi th a truncated power-law degree distribution model 
which defined rigorously in Equation 3.4 i n Section 3.3. The results were more 
promising: a ll networks f ollowed t he truncated power -law deg ree di stribution 
model  with  quite  small  cut-off  coefficients.  This  gave  a  hint  that  it  seems  that  
biological networks follow the power-law degree distribution model only in very 
small degrees. Actually already in Jeong et al. (2001) there was supporting evi-
dence stating t hat biological networks f ollow be tter the truncated powe r-law 
degree distribution model than the ‘normal’ power-law degree distribution mod-
el. In addition, some o ther a lternative models to the power-law degree distribu-
tion model have emerged. For example, in Pržulj e t al. (2004) th ey introduced a 
geometric ra ndom m odel. In Pržulj (2007) they showed that many protein-
protein i nteraction networks are m ore c onsistent with this model than with t he 
power-law degree distribution model. Based on all of these findings we can con-
clude that it seems that the power-law degree distribution model is not present in 
the ideal form suggested by the theory in biological networks, and also there has 
been evidence stating that these models contain sampling artifacts, i.e. if a sub-
network follows the power-law degree distribution model, it does not imply that 
the whole network follows it (Aittokallio & Schwikowski, 2006). 

A recent network biology review (Lima-Mendez & Helden, 2009) p oints out 
the above-mentioned weaknesses of ubiquitous complex network properties but 
it a lso points out that complex network t heory has cr eated important tools a nd 
concepts such as hub, robustness a nd modularity that have tur ned out to b e a 
powerful fra mework in practical applications in ne twork b iology. Especially, it 
points out the importance of l ocal modules and mot ifs. The same issue is elevat-

                                                   

4 This d istribution is de fined f ormally in Se ction 3.3 in a b ullet e ntitled “ Power-law 
degree distribution model”. 
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ed also in another network biology review (Qi & Ge, 2006) in w hich they point 
out that the modularity i s an im portant concept when studying biological ne t-
works in dynamic manner. 

During the last few years useful biological applications have emerged. For ex-
ample Luscombe et al. (2004) developed a method called Statistical Analysis of 
Network Dynamics (SANDY). This method has biological novelty, since it han-
dles a biological ne twork in dyn amic manner: pr eviously biolog ical ne tworks 
were studied in static m anner. T his method u ses t ime-varying tra nscriptomics 
data from multiple conditions. For each condition it calculates topological 
measures ( e.g. node deg rees), i dentifies most i mportant hubs and mo tifs. T hey 
showed the utility of the method by a case study in which a cell was exposed to 
inter-cellular processes in two conditions and to environmental changes in three 
conditions. T hey found that transcription factor combinations a re complex a nd 
highly inter-connected under inter-cellular processes, whereas they ar e simple 
and loosely connected under environmental changes. 

As a local modularity approach Chuang et al. (2007) developed a method that 
searches sub- networks in t he context of gene expression d ata. T hey used this 
method t o s earch s ub-networks in a protein-protein i nteraction n etwork t o d is-
criminate patients with breast cancer metastasis. As a re sult, they de tected sub-
networks t hat pr ovided novel hy potheses for pat hways involved in tumor pr o-
gression. These networks contained genes that were not differentially expressed 
whereas they importantly interconnected differentially expressed genes. This 
indicated the importance of the network a pproach: the gene expression data 
alone would not have been able to detect the interconnecting genes. 

In addition, visualization has been an important topic during t he last few 
years. T here is a huge a mount of heterogeneous b iological data available an d 
there are several good single tools for visualizing and analyzing heterogeneous 
biological data, for example Cytoscape (Cline et al., 2007), PATIKA (Demir et 
al., 2002), ONDEX (Köhler et al., 2006), Medusa (Hooper & Bork, 2005), Os-
prey (Br eitkreutz et a l., 2003), BioLayout Express(3D) (F reeman et a l., 2007), 
ProViz (Iragne et al., 2005), PIVOT (Orlev et al., 2004), COPASI (Hoops et al., 
2006), GEPASI (Mendes, 1993, 1997), E-CELL (Tomita et al. , 1999), COBRA 
Toolbox (Becker et al., 2007). However, the ba sic pr oblem t hat the biol ogist 
faces is the u sability: databases and t ools tend t o b e s eparated fr om ea ch other 
(Gehlenborg et a l., 2010; O’Donoghue et a l., 2010), and they are usually quite 
difficult to use in a real b iological context (Saraiya et al., 2005; Pavlopoulos et 
al., 2008). Therefore, there is need for integrated platforms that allow easy visu-
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alization and analysis of heterogeneous data (e.g. signaling, regulatory, metabol-
ic) across multiple l evels (e.g. from molecular to anatomical level) in d ifferent 
contexts ( e.g. cellular localizations, disease versus healthy state). T raditionally 
this has been quite a formidable challenge, but efforts towards this direction are 
underway. 
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3. Methods 
In this chapter we describe the methods us ed in t his thesis. In S ection 3.1 w e 
describe a heterogeneous biological data visualization system called megNet that 
constitutes  the set  up for  the research of  this  thesis.  In Section 3.2 we describe 
the Enriched Molecular Path detection method (EMPath) that is the main method 
developed in this thesis. In Section 3.3 we go through the most commonly used 
topological methods of biological networks a nd briefly de scribe how we us e 
them in thi s thesis. In Sec tion 3. 4 we de scribe t he T opological E nrichment 
Analysis for Functional Subnetworks method (TEAFS) to which this thesis con-
tributes. 

3.1 megNet – Heterogeneous biological data 
visualization system 

In Publications II–V we h ave developed a heterogeneous bi ological vi sualiza-
tion system called megNet in order to a ddress the needs of systems biology: 
model various b iological interaction types as holistic sy stems (Ideker et al., 
2001; Kitano 2002a, b). The main aim is to provide easy visualization of hetero-
geneous biological data (Gehlenborg et al., 2010; O’Donoghue e t al., 2010). 
This system is described in de tail in these publications. In this chapter we de -
scribe it briefly. More specifically, in Section 3.1.1 we present its overall idea. In 
Section 3.1.2 we briefly describe its technical architecture and main algorithms. 

3.1.1 Overall idea 

An overall conceptual framework of megNet is presented in Figure 1 of Publica-
tion V.  Several  single  biological  databases  exist.  The  basic  idea  is  to  integrate  
these databases into an integrated platform, and thus translate the work made on 
these databases into practical utility. Once the d ata is integrated, t he user then 
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models it a s a ne twork: biological entities as nodes (e.g. proteins, metabolites) 
and interactions as edges (e.g. protein-protein interactions, metabolic reactions). 

Once the us er has cre ated the network model, he or she then uses megNet to 
construct networks that are usually quite large for reasonable interpretation. He or 
she therefore needs to study them in a specific context that can be for example a 
medical image or a physiological condition from a yeast culture. Then he or she 
uses computational methods to extract con text sp ecific information from t he 
network.  He or  she can use for  example a  context  based mapping that  we will  
briefly describe in Section 3.1.2. Alternatively he or she can export the network to 
other tools for example to the Enriched M olecular Path detection method (EM-
Path) (Se ction 3 .2), or to the To pological En richment A nalysis of Function al 
Subnetworks method (TEAFS) (Section 3.4). In addition, he or she can browse 
the network manually, a nd use the human eye to detect for example cross-talk 
between different stages of biological processes. T he utility of this approach is 
demonstrated by practical examples in Sections 4.1.1 and 4.1.3. Also, we have 
made an online demo in http://sysbio.vtt.fi/megNet_demo/index.html5 that brief-
ly shows a few use-case examples. 

3.1.2 Technical architecture and main algorithms 

The technical architecture of megNet is described in detail in Publications II–V. 
It can be divided in three main components: client, middle tier and database tier 
that are presented in Figure 3.1. Next we will describe how the middle tier im-
plements the ma in a lgorithms of megNet. Also, we will b riefly describe t he 
basic functionalities of the client and the overall content of the database tier. 

                                                   

5 If  this  link  expires,  please  contact  the  author  of  this  thesis  (Erno.Lindfors@vtt.fi) to 
request an updated link. 

http://sysbio.vtt.fi/megNet_demo/index.html5
mailto:Erno.Lindfors@vtt.fi
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Figure 3.1. Main components of megNet. 

Middle tier 

The purpose of middle tier is t o process t he algorithm logic of megNet. More 
specifically, it constructs ne tworks, p erforms t ext mining, context based m ap-
ping a nd topology calc ulations. In t his s ection we will describ e how megNe t 
implements these algorithms. 

The middle t ier is implemented in Java programming language by using JVM 
v.1.6.16 (Oracle, Inc.), and it is r unning on a JBo ss Application Server (JBoss, 
Inc.). It uses a Tamino Java API and Oracle JDBC Thin drivers to communicate 
with t he d atabases, and Simple Objec t Access P rotocol (SOA P) messages t o 
communicate  with  the  user  interfaces  by  using  internal  XML schemas  that  are  
represented as diagrams in Figures 3.2–3.12. 
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Network construction 

Network construction is t he most central algorithm that the middle tier imple-
ments, since most of the o ther algorithms use the network. It takes a graph c on-
struction request (Figure 3.2) as in put. This message comprises many elements 
which enables constructions of networks of many types. Most of these elements 
are optional which means that the m iddle tier can con struct the network f rom 
only a few input para meters. Next we w ill briefly desc ribe each o f these ele -
ments. 

 QueriedDatabases. This element comprises t he names of the databases 
from which t he middle tier retrieves interactions a nd reactions f or the 
network. 

 Species. This ele ment c omprises t he species in which the m iddle tier 
constructs the network. 

 UniProtAccessionNumbers. This element comprises the UniProt acces-
sion numbers (UniProt Consortium, 2010) of pr oteins for which t he 
middle tier retrieves interactions and reactions. 

 UniProtEntryNames. T his element comprises the UniProt entry na mes 
(UniProt Con sortium, 2010) o f pro teins for w hich the m iddle tier r e-
trieves interactions and reactions. 

 EcNumbers. T his element comprises t he EC numbers (Webb, 1992) of 
proteins for which the middle tier retrieves interactions and reactions. 

 EmblIds.  This  element  comprises  the  EMBL  identifiers  (Cochrane  &  
Galperin, 2010) of genes for which the middle tier retrieves interactions 
and reactions. 

 KeggMetabolicPathways. Thi s e lement com prises the n ames of m eta-
bolic pathways that the middle tier retrieves from K EGG (Kanehisa et 
al., 2004) and integrates them with other selected databases. 

 YeastNetMetabolicPathways. This element comprises the names of met -
abolic pathways that the m iddle tier retrieves from Yeast 1 .0 (Herrgård 
et al., 2008) and integrates them with other selected databases. 

 GeneNames. This element comprises t he na mes of genes for which th e 
middle tier retrieves interactions and reactions. 
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 GoAccessions. This element comprises the GO (Gene Ontology Consor-
tium, 2008) accessions of biological processes for which the middle tier 
retrieves interactions and reactions. 

 CompoundNames. This element comprises the names of compounds for 
which the middle tier retrieves interactions and reactions. 

 KeggCompoundIds. This element comprises the KEGG identifiers 
(Kanehisa et al., 2004) of compounds for which the middle tier retrieves 
interactions and reactions. 

 Depth. T his element c omprises t he depth of the ne twork construction, 
which means how many nearest neighbors the middle tier r etrieves for 
given proteins, genes and/or metabolic pathways. 

 CorrCoeffs. This element comprises correlation c oefficients for gene 
pairs for which the middle tier constructs a co-expression network and 
integrates it with interactions and reactions retrieved from other selected 
databases. 

 BarDataSets. This element comprises gene expression datasets that the 
middle tier associate with genes so the client visualizes them as bars in-
side gene nodes. 

 UseComp. T his element defines whether the middle tie r constructs a 
compartmentalized or non- compartmentalized network. 
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Figure 3.2. XML schema for graph construction request. 



3. Methods 

33 

Once the middle tier has con structed the network, i t r eturns it as a g raph con-
struction response (Figures 3.3–3. 5). This message comprises t hree m ain ele -
ments that we will briefly describe below. 

 ConnectionTypes. T his element comprises connection types that the 
network comprises. It has three attributes: the first one defines whether 
the connection is uni-, bi-, or non-direc tional, the second one def ines a 
shortened name for the connection type (e.g. PROT_INT) and the third one 
defines a longer name for the connection type (e.g. “protein interaction”). 

 Nodes. This element comprises nodes that the network comprises (Fig-
ure 3.4). Each sub-element represents one node type (e.g. protein, gene). 
Each of these elements comprises more specific data about the node. For 
example, the protein comprises many identifiers that describe it in detail 
(e.g. UniProt Identifiers, EC number) as described in Figure 3.4. 

 Edges. T his element comprises edges t hat the ne twork comprises (F ig-
ure 3.5). Each sub-element represents one edge type (e.g. protein-protein 
interaction, KEGG). Each of these elements comprises more specific da-
ta about the edge. For example, the protein-protein interaction comprises 
source databases from which the interaction was retrieved as described 
in Figure 3.5. 

 

Figure 3.3. XML sche ma f or the m ain elements of graph const ruction r esponse. The 
nodes and edges elements are opened in Figures 3.4 and 3.5 respectively. 
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Figure 3.4. XML schema for the nodes element of graph construction response. 
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Figure 3.5. XML schema for the edges element of graph construction response. 
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Text mining 

The text mining algorithm takes a text mining request (Figure 3.6) as input. This 
message comprises elements f or databases a nd species. T he purposes of t hese 
elements are similar as in the graph construction request: they define from which 
database and in which species the midd le tier retrieves data. Also, there is a n 
element that defines keyword(s) (e.g. diabetes, oxygen) for the retrieval. 

 

Figure 3.6. XML schema for text mining request. 

The middle tier retrieves gene expression microarray data sets and proteins that 
are a nnotated with t he keyword f rom GEO (Barrett et al., 2009) a nd UniProt 
(UniProt Consortium, 2010) r espectively, and includes them in the text mining 
response (Figure 3.7). The retrieved proteins are included the ProteinNodes element, 
which is identical to this element in the graph construction response (Figure 3.4). 
The retrieved datasets are included in the DataSets element. This element com-
prises a data type called ExperimentDataType. This data type comprises an 
experiment specific data (e.g. textual description, title, keywords, medical anno-
tations). In addition, the DataSets element comprises a Samples element that 
contains also the ExperimentDataType which in tu rn defines a sample specific 
data. In the DataSets element there is a Channel attribute that defines whether 
the data set is o f single ( Lockhart et a l., 1996) o r of dual (Schena et a l., 1995) 
channel microarray. 
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Figure 3.7. XML schema for text mining response. 

Context based mapping 

The purpose of the context based mapping algorithm is to map internal distances 
of nodes of a biological network into low a dimensional output space (usually 
two or three). Figure 1 of Publication IV illustrates how the in ternal distances 
are calculated. The internal distances and the output space have some discrepan-
cy that we call mapping error. The purpose of the mapping algorithm is to iterate 
the output space so that the m apping error is m inimized. The middle tier com-
prises three mapping methods: Sammon’s Non-Linear Mapping (Sammon, 
1969), CCA  (Dem artines & Hérault, 1997) a nd CDA (Lee et a l., 2004). The 
mapping algorithm comprises three messages: initialize mapping request (Figure 
3.8), mapping response (Figure 3.9) and iterate mapping (Figure 3.10). Next we 
will briefly describe the content of each of these messages and h ow the m iddle 
tier interacts with them. 

The purpose of the initialize mapping request is to initialize a mapping for a 
network. It comprises a Graph element, which is identical to this element in the 
graph construction response (F igure 3.3), and it comprises a network for which 



3. Methods 

38 

the mapping will be initialized. This network comprises weights of the edges as 
illustrated in t he graph c onstruction r esponse (F igure 3 .5). They are t aken into 
account when calculating the internal distances of the nodes. Also, the initialize 
mapping request comprises input parameters elements for each mapping types: 
CdaParameters, CcaParameters and SammonsParameters element. All of these 
elements comprise a ResponseDimension attribute that defines the dimension of 
the output space and a StartingIterations attribute that defines how many times 
the mapping is iterated in the initialization. The CdaParameters and CcaParam-
eters elem ents c omprise additional mapping par ameters that are de scribed in 
detail in Publication III. 
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Figure 3.8. XML schema for initialize mapping request. 

When receiving an initialize mapping request, the middle tier first calculates the 
internal di stances, a nd the n ini tializes the ou tput space b ased o n the m apping 
parameters. It includes t he mapping error between the initi alized output spa ce 
and internal distances in a MappingError element and the coordinates of th e 
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initialized output space in a Coordinates element (Figure 3.9). This element has 
a Coordinate child element that defines coordinates for one node of the biologi-
cal n etwork of which internal n odes are b eing mapped. PosX, PosY and PosZ 
attributes defines the position of the node in the output space. The NodeId attribute 
links the node to the Graph element of the initialize mapping request (Figure 3.8). 

 

Figure 3.9. XML schema for mapping response. 

The purpose of the iterate mapping request (Figure 3.10) is to request the middle 
tier to iterate the output space. It c omprises elements for coordinates and map-
ping parameters that are identical to the corresponding element in the mapping 
response (Fig ure 3.9). T hese ele ments c omprise the coordinates of t he o utput 
space before these iterations and mapping parameters that will be used in these 
iterations. In addition, the iterate mapping r equest comprises a n Iterations e le-
ment and a MappingType e lement. The former defines the number of iterations 
that will be performed and the latter defines the type of the mapping method that 
will  be  used  in  these  iterations.  When  the  middle  tier  has  performed  the  itera-
tions, it includes the iterated output space in a mapping response (Figure 3.9). 
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Figure 3.10. XML schema for iterate mapping request. 

Topology calculations 

The purpose of the topology calculation algorithm is t o calculate the cl ustering 
coefficient, in- a nd o ut-degree d istributions f or a gene ric biologi cal network. 
The mathematical de tails of these di stributions ar e described i n E quations 3.2 
and 3.3 in Section 3.3. This algorithm was used in a topology example in a yeast 
metabolic network (Section 4.3.1) and in a topological enrichment example un-
der oxidative stress (Section 4.3.2). The topology calculation algorithm compris-
es a topology calculation req uest a nd response. Next we w ill brief ly de scribe 
these messages and how the middle tier interacts with them. 

The topol ogy calculation r equest (Figure 3. 11) c omprises a Graph element, 
which is identical to this element in the graph construction response (Figure 3.3), 
and it comprises a network for which the topology calculation will be performed. 
Also,  it  comprises  a  TopologyCalculationParameters element  that  comprises  a  
Boolean attribute describing whether the distribution will b e calculated for in- 
and out-degrees and another Boolean attribute describing whether the di stribu-
tion will be calculated for clustering coefficients. 
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Figure 3.11. XML schema for topology calculation request. 

When receiving a topology calculation request, the middle tier calculates select-
ed distribution type(s), and includes the calculated distribution(s) in the topology 
calculation response (Figure 3.12). More specifically it includes degree and clus-
tering coefficient pairs in a DegreeAndClustCoeffPair element and in- and out-
degree occurrences in InDegree and OutDegree elements. All of t hese elements 
comprise attributes for node ids that link them to the nodes in the Graph element 
of the topology calculation request (Figure 3.11). 

 

Figure 3.12. XML schema for topology calculation response. 
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Client 

The purpose of the client component is to provide user interfaces for visualizing 
networks and for p erforming a context based mapping. We have had three sepa-
rate user interfaces. In Publications II–IV we developed a desktop user interface 
implemented in Java environment, and the network visualization was imple-
mented by Tom Sawyer Visualization Toolkit 6.0 (Tom Sawyer, Inc.). In Publi-
cation V we developed an improved user interface. T his is al so a desktop user 
interface but i t visualizes networks in three dimensions. I t is a Mic rosoft Win-
dows application developed in C# 2.0. It uses Microsoft .NET Framework Ver-
sion 2.0. T he three dim ensional visualization i s implemented in Mi crosoft’s 
DirectX 9.0c platform. Also, in Publication V we developed a web user interface 
by using G oogle Web T oolkit ( http://code.google.com/intl/fi/webtoolkit). This 
user interface takes input parameters from the user, and then uses the middle tier 
for network construction. The constructed network can be exported to the desk-
top us er interface fo r visualization o r alternatively to Cy toscape (Cline et a l., 
2007) which a popular generic biological network visualization tool. 

Database tier 

The database tier comprises all databases that are incorporated in megNet. Most 
of them are presented in an XML format and they are stored in a Tamino XML 
server (Software AG) in a Redh at Linux Advanced Server v2.1 environment. In 
addition, some of the data is presented in a relational database format, and they 
are stored in an Oracle 10g database server (Oracle, Inc.). In Publications II–V 
we have described in detail for example how the databases have been incorpo-
rated, and how the middle tier retrieves data from them. In Table 3.1 we briefly 
list all database s we currently have in m egNet. M ore extensive d escription of 
this data is p resented in P eddinti V. Gopalacharyulu’s PhD dissertation ( Go-
palacharyulu, 2010). 

http://code.google.com/intl/fi/webtoolkit
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Table 3.1. megNet’s databases. 

Database type Database names 

Protein-protein interaction databases  BioGRID (Reguly et al., 2006) 
 DIP (Xenarios et al., 2002) 
 MINT (Ceol et al., 2010) 
 BIND (Bader et al., 2003) 

Metabolic pathway databases  KEGG (Kanehisa et al., 2004) 
 genome-scale yeast metabolic models  

(Herrgård et al., 2008; Dobson et al., 2010) 

Transcriptional regulatory databases  TransFac (Matys et al., 2003) 

Signal transduction databases  TransPath (Krull et al., 2006) 

Compound databases  PubChem (Wang et al., 2009) 
 KEGG compounds (Kanehisa et al., 2004) 

Ontological databases  GO (Gene Ontology Consortium, 2008) 
 OAT (Timonen & Pesonen, 2008) 

Gene expression databases  GEO (Barrett et al., 2009) 

Protein and gene sequence databases  UniProt (UniProt Consortium, 2010) 

 EMBL (Cochrane & Galperin, 2010) 

 

3.2 EMPath – Enriched Molecular Path detection method 

In Publication I we have developed t he E nriched Molecular Path detection 
method (EMPath) and showed its utility i n the context of type 1 diabetes mouse 
models. Figure 3.13 shows a schematic pipeline of this method. 
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Figure 3.13. The schematic pipeline of the EMPath method. 

This method is based on a molecular interaction network t hat is described in 
detail in Publications II–V. Briefly the idea is that the nodes are biological enti-
ties (e.g. proteins, metabolites) and t he edges are interactions (e.g. protein-
protein interactions, metabolic reactions). 

We put the network in a phenotypic context by assigning weights to the nodes. 
Usually this is based on transcriptomics data since it is most easily available, but it 
can be based on any phenotypic specific data. Also, we assign weights to the edges 
based on their reliabilities (e.g. reliabilities of protein-protein interactions). 

The actual path detection is based on a c olor coding a lgorithm (Alon et al., 
1995) that was developed to detect optimal paths in a complex network. T his 
method is generic and it is applicable to be used in a complex network of many 
types. To my knowledge in biology it was first used to detect signaling cascades 
in a protein-protein interaction network in yeast Saccharomyces cerevisiae 
(Scott et al., 2006). In Publication I we tailored this method so that it is suitable 
for detecting paths in a pheno typic cont ext. Next we will briefly de scribe our 
approach to use this method. 
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Figure 3.14. The scoring and coloring of the EMPath method. 

In the beginning we define the length of the path that will be detected. It can be 
any integer. Let us denote it by k . In order to score the path, we assign the phe-
notypic weights to the nodes and the reliability weights to the edges as illustrated 
in Figure 3.14. Exact scoring formulas are presented in Equations (1–3) of Pub-
lication I a s follows. First we multiply the edge we ights, so a long cascade of 
unreliable edges gets enough penalty. Then we sum up the node weights. In the 
end we calculate the total weight by multiplying the edge product and the node 
sum. 

The basic idea of the path search strategy is that we assign colors to the nodes 
(Figure 3.14) and we allow the detected path to contain a same color only once, 
which guara ntees that t he detected path i s simple and makes the se arch algo -
rithm non-greedy since it does not go through all possible branches which would 
be time-consuming especially in a dense network. T he path search stra tegy is 
described rigorously in the equation on the next page. 
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 (3.1) 

If we do not manage t o detect a path by using the procedure described in t he 
previous pa ragraph, we use a sliding window ( Figure 3.14). T he ide a is t hat 
when we are detecting a path, we have a window in which we have most recent-
ly taken nodes. The single color requirement applies only to the nodes t hat are 
inside the window. For example in Figure 3.14 we have a window of size two 
that contains grey and pink colo rs. We have blue in the detected path but th e 
corresponding node is outside t he window, s o we can a dd another b lue to the 
detected path. The sliding window makes the path detection faster since there are 
less denied colors. However, in the end we have to check th at the detected path 
does not c ontain any cycle, a nd discard it if i t contains. We fi rst tr y the path 
detection by using 1k  as window size. If we do not manage to find a path, we 
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decrease the window size by one. We continue this until the window size is one. 
If we do not manage to find a path with this window size, we conclude that we 
did not manage to detect a path. 

In order to assess the statistical significance of the detected path, we calculate 
a p-value for it. We shuffle the edge and node weights of the origin al network 
10 000 times. After each shuffle we use the same pa th detection proc edure t o 
detect an optimal in the shuffled network. However, it does not make sense to 
make all 10 000 sh uffles for pa ths for which the p-value does not look promis-
ing. Therefore after each shuffle we check how promising the p-value looks by 
calculating the percent of shuffles in which the o ptimal path score is higher i n 
the shuffled network t han in the original network. If the p ercent is greater than 
0.025, we discard the path and jump to the next path. 

In the end we ca lculate the p- value for a path for which we managed to p er-
form all 10 000 permutations in the same way as described in the preceding par-
agraph. If the o btained p-value is less than 0.025, we conclude that the path is 
statistically significant. Otherwise, we discard the path. 

We consider that the network is harvested if its all statistically significant 
paths are de tected. However, there is not a ny rigorous way t o investigate this. 
Therefore, we take a heuristic approach by assuming that the network is harvest-
ed if we come up with a predefined number (e.g. 50) of consecutive iterations in 
which  the  detected  path  is  already  detected.  Also,  we  restrict  the  algorithm  to  
take only a lim ited number of significant path s ( e.g. 2), s ince it is tim e-
consuming to calculate a p-value for a significant path. We therefore quit detect-
ing paths if we come up with a conclusion that the network is harvested or if we 
have detected enough statistically significant paths. 

We can perform the above-described path detection procedure by using differ-
ent path lengths (e.g. from 3 to 12). After that we can interpret results by study-
ing t he detected paths individually and b y p erforming a functional enrichment 
analysis to associate the detected paths with previously known pathways. 

3.3 Topological methods of biological networks 

The purpose of this s ection is to introduce most commonly used complex net-
work concepts in the c ontext of biologic al networks. In mathematical terms we 
model a biological network as a graph ENG ,  in which N  is a set of nodes 
and E  is a se t of edges that connect two elements of N : 2NE . The b io-



3. Methods 

49 

logical network can be directed or undirected: in a directed network the order of 
edge’s nodes matters, whereas undirected network it is irrelevant. 

Next, I will brie fly de scribe m ost comm only used topological me asures of 
biological networks that have been summarized for example in a network biolo-
gy review (Barabási & Oltvai, 2004). 

 Degree. T his measure defines how m any edges a n ode has. Let us d e-
note it by k. In a directed network we usually use two separate measures: 
in-degree and out-degree.  Let  us  denote  them by  ink  and outk  r espec-
tively. The former stands for the number of edges that are targeted to the 
node, a nd the latter stands for the n umber of edges starting from t he 
node. 

 Clustering coefficient. T his measure desc ribes the density of node’s 
neighborhood connections. Let us denote it by C. More specifically, for 
a node i  it is obtained by dividing the number of edges that connect the 
neighbor nodes of the node i  (henceforth in ) by the number of all pos-
sible edges between the neighbor nodes of the node i . In mathematical 
terms it is defined by 1*/2 kknC ii . In extreme case this meas-
ure obtains one if there are edges between all neighbor nodes, and in the 
opposite ext reme it obt ains zero if t here is not a ny edge b etween t he 
neighbor nodes. 

Based on the above-mentioned topological measures we can derive the follow-
ing distributions that have been commonly used in topol ogical analyses of bio-
logical  networks.  These  concepts  are  also  summarized  in  Barabási  &  Oltvai  
(2004). 

 Degree distribution. This distribution defines the probability that a ran-
domly selected node from a ne twork has a certain degree. It is usua lly 
defined s eparately for in-degrees and out-degrees. These distribution s 

kinP  and koutP  are defined more formally in the equation below. 
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 Clustering coefficient distribution. This distribution stands for the prob-
ability t hat a random ly s elected no de from the ne twork has a certain 
clustering coefficient. It is defined only for an undirected network. This 
distribution kC  is more formally presented in the equation below. 
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Next, I will briefly describe a few wide ly used biological network models t hat 
use the above-mentioned distributions. These models are also described in detail 
in  Barabási & Oltvai (2004) except that the truncated power-law is described in 
Khanin & Wit (2006). 

 Erd s-Rényi random network model. In the Erd s-Rényi random net-
work model (Erd s & Rényi, 1959; 1960) totN  nodes are connected 
randomly to each other with pr obability p. T he degree distributions of 
this model kinP  and koutP  are rapidly increasing and decreasing bell 
shaped curves having a sm all average value (e.g. 2–3). This means that 
almost all nodes have only a few links, and there are no highly connect-
ed nodes. The clustering coefficient distribution kC  is a straight hori-
zontal line in this model, which means that the cl ustering coefficient is 
independent of a node’s degree. 

(3.3) 
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 Power-law degree distribution model6. In the power-law degree distribu-
tion model (B arabási & Albe rt, 1999) the deg ree distr ibutions kinP  
and koutP  differ from the degree distributions of the Erd s-Rényi ran-
dom network model, and they are of form ke-k , in which  is a 
degree exponent. These deg ree distribution s a re l inearly decreasing in 
log-log scale. Like in the Erd s-Rényi random network model the clus-
tering coefficient distribution kC  is a straight horizontal line meaning 
that also in this model t he c lustering coe fficient is independent of a 
node’s degree. 

 Truncated power-law degree distribution model. This distribution is a 
truncated version of the power-law degree distribution model: it follows 
the power-law only in small numbers, which means that the network fol-
lows the power-law within the r ange ckk1 . This distribution is de-
fined more rigorously in the equation below. 
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 Hierarchical network model. The hierarchical network model (Ravasz et 
al., 2002; Ra vasz & Barabási, 2003) combines the powe r-law degree 
distribution, modularity and local clustering into one m odel. T he basic 
idea  is  that  the  network  has  a  pyramid  structure  in  which  modules  are  
organized in a hierarchical m anner: in the low level the re are hi ghly 
connected modules, and in the uppe r level there are loosely connected 
modules. The cl ustering coefficient distribution kC  is thus linearly 
decreasing in log-log scale. The degree distributions kinP  and koutP  
are also linearly decreasing in log-log scale since in the high level there 
are only few highl y connected nodes, whereas in the lower level there 
are quite many loosely connected nodes. 

                                                   

6  In some contexts this model is called scale-free network model. However, it is pointed 
out that th e con cept of s cale-free t ends to b e a mbiguous (Lima-Mendez & Hel den, 
2009), so I do not use it in this thesis. 
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3.4 TEAFS – Topological Enrichment Analysis for 
Functional Subnetworks 

In Publication VI we have developed the Topologi cal Enrichment Analysis of 
Functional Subnetworks method (TEAFS) and showed its ut ility in the context 
of oxidative str ess in yeast Saccharomyces cerevisiae. Figure 3.15 shows a 
schematic pipeline of this method. 

 

Figure 3.15. The schematic pipeline of the TEAFS method. 

The TEAFS pipeline starts from a construction of a megNet network: integration 
various interaction types into one network. This network can comprise any type 
of molecular interactions, for example pro tein-protein in teractions, metabolic 
reactions, transcriptional regulations. 

We reconstruct n etworks at tim e points by using a time series of a tran -
scriptomics data set. This is based on a method that was introduced in a dynamic 
network topology study (Luscombe et al., 2004). We first reconstruct a reference 
network at tim e point t(0) by taking all protein nodes of which encoding genes 
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are in the transcriptomics data set. Then at each time points t(1), t(2), …, t(n) we 
reconstruct a network by removing protein nodes and their incident edges based 
on the expressions of their encoding genes. This requires that the transcriptomics 
data set is of dual channel (Schena et al., 1995). In order to decide whether we 
remove a protein node and its incident edges, we first divide the log-transformed 
values of the contro l channel intensities in high, medium and low by using a k-
means clustering algorithm (Lloyd, 1982). T hen we use a change between t he 
case a nd c ontrol intensities, and deduce t hat it is either up, constant or down. 
Then based on the control condition intensity level and change between case and 
control intensities we use T able 4 of Publication VI t o decid e wh ether we re-
move the protein node and its incident edges. 

We divide the networks in functional modules based on a biological criterion. 
It can be for example based on protein’s and gene’s involvement in GO biologi-
cal pr ocesses (Gene Ontology Conso rtium, 2008) or in metabolic pathways 
(Kanehisa et al., 2004). 

We rank the functional modules based on their activities in terms of three top-
ological measures: in-degree, out-degree and clustering coefficient that a re de-
scribed in more detail  in  Section 3.3 More specifically,  we first  calculate  a  de-
activation ratio for each module at each time interval [t(i), t(i+1)] by dividing the 
sum of a topological measure of proteins that are present at time t(i) but absent at 
time  t(i+1)  by  the  sum of  proteins  that  are  present  at  time  point  t(i).  Then  for  
each module we p erform 10 000 p ermutations in t erms of each topologi cal 
measure in order to calculate p- values rejecting t he n ull hypothesis stating t hat 
proteins are deactivated uniformly in the whole network. In each permutation we 
create a ‘ra ndom module’ by removing each protein at e ach time interval with 
probability of the corresponding de-activation r atio. The p -value is obtained b y 
dividing the number of permutations in which the activity of the topological meas-
ure in the random module is at least as much as it is in the original module by the 
number of all permutations (10 000). Then we correct the p-values from multiple 
comparisons by using Bonferroni correction, and ca lculate False Discover Rate 
(FDR) q-values. We consider modules of which q-value is less than 0.05 as sta-
tistically significant. 

In the end we validate the results: figure out if the detected activities of func-
tional modules under the given condition make sense. We can do this for exam-
ple by in-house metabolomic experiments or by literature survey. 
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4. Results and discussion 
In this chapter we present the main results of this thesis. In Section 4.1 we show 
a few integrative biological data visualization examples in megNet. In Section 
4.2 we show the utility of the Enriched Molecular Path detection method (EM-
Path) in the context of type 1 diabetes. In Section 4.3 we show network topology 
studies carried out in this thesis. 

4.1 Integrative biological data visualization in megNet 

In this section we show the basic idea of megNet: the ability to visualize biolog-
ical data across multiple interaction levels and the ability to enable context based 
inference.  In  Section  4.1.1  we  show  that  megNet  has  potential  for  interesting  
novel hypotheses by an example in which a protein-protein interaction connects 
two enzymes that are from each other in metabolic level in yeast Saccharomyces 
cerevisiae. In Section 4.1.2 we show that megNet can be used for context based 
mapping b y an example in which a Gene Ontology biologi cal pr ocess (Gene 
Ontology C onsortium, 2008) cat egorizes biological entities involved i n yeast 
metabolism i nto t wo groups. In S ection 4.1.3 we apply t hese approaches to a 
medical context: we show cross-talk and context based mapping examples in the 
context of medical i mage da ta leading t o i nteresting a ssociations b etween b io-
logical networks and medical image data. 

4.1.1 Cross-talk in yeast metabolism 

There h as been ev idence th at between different biological in teraction le vels 
there is cross-talk leading to interesting phenotypes (Papin & Palsson, 2004; Lee 
et al., 2008; Li et al., 2010). In Public ation II we showed how megN et can b e 
used to find this kind of cross-talk by constructing an integrated metabolic 
(KEGG; Kanehisa et al., 2004) and protein-protein interactions (MINT; Ceol et 
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al., 2010, BIND; Bader et al., 2003) network in yeast Saccharomyces cerevisiae. 
We included Glycolysis/Gluconeogenesis, Pentose phosphate pathway and Cit-
rate cycle metabolic pathw ays a long with thei r protein-protein in teractions in 
this network. As a result we obtained a network that is visualized in Figure 5 of 
Publication II. We can see that there are quite much protein-protein interactions 
making cross-talk be tween dif ferent sta ges of metabolism. For example, t here 
are two enzymes: phosphoglycerate kinase and acetate-CoA ligase that are quite 
far fr om e ach o ther in m etabolic level: the former is invol ved in the starting 
point of citrate cycle, whereas the latter is involved in the second phase of gly-
colysis. However, both of these enzymes interact with an SRB2 protein detected 
by the yeast two-hybrid method (Uetz et al., 2000; Ito et al., 2000; Fields, 2005). 
There is evidence that the SRB2 protein is i nvolved in transcriptional initiation 
(Thompson et al., 1993), which could be a sign that the se two enzymes are co-
regulated at different stages of metabolism. However, it is good to keep in mind 
that the yeast two-hybrid method notoriously produces quite much false-positive 
protein-protein interactions (Mrowka et al., 2001). However, we believe that this 
cross-talk can shed light on novel hypotheses. 

4.1.2 Context based visualization in yeast metabolism 

In Publication III we integrated Gene Ontology biological process terms (Gene 
Ontology Consortium, 2008) with a metabolic pathway network (KEGG; 
Kanehisa et al., 2004) in yeast Saccharomyces cerevisiae by using megNet. In 
Figure 6 of Publication III there is a zoomed region from the neighborhood of a 
citrate cycle biological process term. We performed a context based mapping by 
assigning low weigh ts t o the incident edges of the citrate cycle biological process 
term and then mapping the internal distances into two dimensions by using th e 
CDA mapping method. The results are presented in Figure 7 of Publication III. 
We can see that there are two clusters. This may be a sign that the citrate cycle 
biological process divides metabolic reactions in two main groups: one group of 
reactions that are strongly involved in citrate cycle and another group of reactions 
that are weakly involved in citrate cycle. 

4.1.3 Network visualization in context of medical image data 

It is becoming clear that there is need to integrate biological networks with med-
ical images (Walter et al., 2010), and as a practical example it recently came out 
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a publication in which biological networks were studied in the context of human 
brain images (Bassett et a l., 2011). In Publication V w e c ontinued t hese direc-
tions by visualizing biological networks in megNet in the context of Lamin A/C 
image data. As a background s tudy, we had previously derived Magnetic Reso-
nance (MR) image parameters from Lamin A/C mutation patients (Koikkalainen 
et al., 2008). In a follow-up study we had performed lipidomics analysis in the 
same patients, and developed a statistical model to find associations between the 
lipidomics profiles and medical im age parameters (Sysi-Aho e t al., 2011). In 
order to understand these associations better, in Publication V we used megNet 
to construct a biological network in the con text of the same lipidomics profiles. 
More specifically, we first constructed glycerophospho-, glycero- and sphin-
golipid metabolic pathways from KEGG (Kanehisa et al., 2004) in homo sapi-
ens, and mapped mol ecular lipid sp ecies to t heir generic lipid names on t hese 
pathways by using the biochemical knowledge of the side chain length and satu-
ration, as described in Yetukuri et al. (2007). Then we integrated these pathways 
with p rotein-protein i nteractions from B ioGrid (R eguly et a l., 2006), DIP (Xe-
narios et al., 2002) and MINT (Ceol et al., 2010), ontological relationships from 
OAT (Timonen & Pesonen, 2008) and GO (Gene Ontology Consortium, 2008), 
and gene-protein relationships from EMB L (C ochrane & Ga lperin, 2010). T he 
constructed network is visualized in Figure 6 of Publication V. In the same vein 
as in the example in Section 4.1.1 we can see that also between metabolic reac-
tions in this figure there is quite dense cross-talk via many interaction levels. 

A cross-talk example is visualized in Figure 7 of Publication V. There seems 
to be signaling between two isoforms of phospholipase A2 (Coffey et al., 2004). 
One  of  these  isoforms  catalyzes  a  metabolic  reaction  in  which  a  product  com-
prises molecular lipid sp ecies that correlated quite strongly with image parame-
ters in our previous case study (Sysi-Aho et al., 2011), whereas the other isoform 
catalyzes a metabolic re action in which a substrate comprises molecular lipid 
species  for  which  the  correlation  was  not  so  obvious.  Maybe  the  signaling  be-
tween the isoforms of phospholipase A2 has some role in these correlations. For 
example, it may regulate the activities of the phospholipases. 

Another cross-talk example is visualized in Figure 8 of Publ ication V. In this 
figure there a re two isoforms of endothelial lipase: one of them breaks down 
1,2-Diacyl-sn-glycerol and the o ther one br eaks down triacylglycerol.  Both  of  
these lipases are involved in the cholesterol transport and homeostasis biologi-
cal proce sses. In o ur previous ca se study (Sy si-Aho et al., 2011) trigl yceride 
molecular lipid sp ecies were associated with increased end-diastolic wall t hick-



4. Results and discussion 

57 

ness. This may be a sign that cholesterol metabolism has some role in this asso-
ciation: i t may b e associated wi th the inc reased e nd-diastolic w all thickne ss. 
Also, from this f igure we c an see that between the endothelial lipases there are 
associations that have been detected by our in-house text mining s ystem OAT 
(Timonen & P esonen, 2008). T his syst em detected one ar ticle suggesting that 
these lipases are associated with diabetes prevention (Mizuno e t al., 2004), and 
another article suggesting that they ar e associated with maintenance of cell ho-
meostasis (Mi et al., 2004). Fr om the former observation we could make tenta-
tive con clusion that the end-diastolic w all t hickness prevents type 1 diabetes, 
and from the l atter ob servation we could conclude that the e nd-diastolic w all 
thickness may h ave im portant r ole in the maintenance of cell hom eostasis i n 
diabetes development. 

In order t o gain our understanding of the role cholesterol metabolism in the 
association between triacylglycerol a nd end -diastolic wall thickness, we per-
formed a mapping in the context of cholesterol metabolism, in the same vein as 
we p erformed a mapping in t he c ontext of citrate cycle in Section 4.1.2. More 
specifically, we assigned low weights to the incident edges of the nodes corre-
sponding to the cholesterol biological pro cesses t hat were associated w ith the 
endothelial lipase s in the previous paragraph. T he results of thi s mapping ar e 
presented in Figure 9 of Publication V in which there is a zoom from the neigh-
borhood of triacylglycerol.  This  figure  comprises  for  example  a  kinase  and  a  
receptor signaling biological process, which could give a hint t hat maybe a r e-
ceptor signaling cascade st imulates the triacylglycerol to participate in choles-
terol metabolism and in turn associates it with the in creased end-diastolic wall 
thickness. Also, this figure comprises a ‘regulation of macrophage activation’ 
biological process. As supporting evidence there has been discussion that mac-
rophages may pl ay critical role in the pathogenesis of t ype 1 di abetes ( Yang, 
2008). Also, this c ould be related to the observation that we made in the previ-
ous pa ragraph sugge sting t hat the end-d iastolic wall thickness might prevent 
type 1 diabetes. 

4.2 Enriched molecular path detection case study in type 
1 diabetes 

In Publication I we used the Enriched Molecular Path detection method (EM-
Path) in an integrated protein-protein interaction (BIND; Bader et al., 2003, 
MINT; Ceol et al., 2010, DIP; Xenarios et al., 2002), signal transduction 
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(TransPath; Krull e t al., 2006) and me tabolic network (KEGG; Kanehisa et al., 
2004) in the context of tra nscriptomics data from Non-Obese Diabetic (NOD) 
mouse models (Vukkadapu et al., 2005). This data set comprises measurements 
from  pancreas  of  four  NOD  mouse  strains  from  3  week  old  animals:  
BDC2.5/NOD, NOD, BDC2.5/NOD.scid, and NOD.scid. These st rains have 
differences in t erms of insulitis7 and ty pe 1 diabetes development. We detected 
molecular paths i n two case-control settings. In one case -control s etting we 
compared BDC2.5/NOD versus NOD, si nce the BDC2.5/NOD has more accel-
erated in sulitis development. In the other case-control se tting we compared 
BDC2.5/NOD.scid versus NOD. scid, si nce BDC2.5/NOD.scid has more accel-
erated type 1 diabetes development. So, in these case-control settings our pur-
pose was to detect pancreas specific paths that are associated with early insulitis 
and type 1 diabetes development. In both case-control settings we detected sepa-
rately up- a nd down-regulated paths. In Vukkadapu et a l. (2005) these str ains 
were studies in the context of type 1 diabetes related genes. Our purpose was to 
gain understanding of these genes by detecting their interactions. 

The mathematical details of thi s method are described in Section 3.2. In this 
case study we obtained the node weights for pr otein nodes by calculating gene 
expression intensities between case and con trol strains of their encoding genes. 
We obtained the edge weights based on the evidence that a pro tein interaction 
from BIND (Bader et al., 2003) is quite unreliable (Futsch ik et a l., 2007), and 
interactions and reactions from the other databases are r eliable. Therefore, we 
assigned 0.33 to a p rotein-protein interaction edge if the interaction was curated 
only into the BIND database (Bader et al., 2003). We assigned 1.0 to edges from 
the all ot her databases (MINT; Ceol e t a l., 2010, DIP; Xen arios et a l., 2002, 
KEGG; Kanehisa et al., 2004, TransPath; Krull et al., 2006). In the network har-
vesting we used 50 a s the maximum number of consecutively detected paths and 
2 as the maximum number of statistically significant paths. 

As a r esult we o btained several statistically signifi cant up- and down-
regulated paths in both case-control settings. As a most surprising finding many 
lipid pa ths were down-regulated in early insulitis. Especially, an ether phospho-
lipid s ynthesis path was down-regulated. This is an interesting finding, since 
serum ether lipids were diminished children who later progressed to type 1 dia-
betes in com parison with he althy c hildren in a pr evious st udy (Oreši  et a l., 

                                                   

7  Pre-state of type 1 diabetes when pancreatic beta cells get inflammated. 
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2008). The ether phospholipids synthesis path contained plasmalogens that have 
previously found to protect cellular functions from oxidative damage (Zoeller et 
al., 1999; Zoeller et al., 2002). Also, there is evidence that pancreatic beta cells 
are particularly susceptible to oxidative damage (Lenzen et a l., 1996; Cnop et 
al., 2005). Maybe this is a sign that oxidative stress destroys pancreatic beta cells 
during the progression to type 1 diabetes. 

In order to elucidate the biological meaning of the detected paths, we associat-
ed their enrichment with previously known pathways in a Molecular Signature 
Database (Subramanian et al., 2005). As a result we obtained a summary for the 
whole case study. In early insulitis phosphorilation pathways were up-regulated 
that is probably associated with altered cell signaling, and lipid metabolism was 
down-regulated. In type diabetes development paths rel ated to cell communica-
tion were up-regulated, and n ucleotide and nucleoside metabolism were down-
regulated that was probably related to cell cycle and DNA repair. 

4.3 Network topology studies 

In this section we go through network topology studies carried out in this thesis. 
In Section 4.3.1 we show an example in which we performed topological calcu-
lations on a static ye ast metabolic network t o inve stigate whe ther ubiquitous 
complex network properties a re pr esent. In Section 4. 3.2 we describe how we 
develop the T opological Enrichment Analysis for Functional Subnetworks 
method (TEAFS). We first show how we investigated whether ubiquitous com-
plex network properties are present in reconstructed yeast networks under a time 
series of an o xidative stress gene expression data set. Al so in this s ection we 
describe how these results gave motivation to tailor the TEAFS method in order 
to gain our biological understanding by analyzing modules of networks. 

4.3.1 Topology example in yeast metabolism 

In Publication III we con structed a complete metabolic network for yeast Sac-
charomyces cerevisiae from KEGG ( Kanehisa et al., 2004). T he con structed 
network is visualized in Fig ure 3 of Publ ication III. As briefly mentioned in 
Section 3.3 linearly decreasing degree distribution in log-log scale and constant 
clustering coefficient are considered to imply that a biological network follows 
the powe r-law de gree di stribution model, and line arly decreasing de gree and 
clustering coefficient distributions as the hie rarchical network model. Therefore 
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in Publication III we calculated these distributions for the yeast metabolic net-
work, which are presented in Figures 4 and 5 of this publication. We can see that 
the degree distribution is not linearly decreasing, and that the clustering coeffi-
cient distribution is not linearly decreasing and not constant. It th us seems that 
this network does not follow the power-law degree distribution and hierarchical 
network models that were initially ob served to b e present in many b iological 
networks: metabolic networks (Jeong et al., 2000) and protein-protein interaction 
networks (J eong et a l., 2001; Wagner, 2001; Giot et al., 2003; Li e t a l., 2004; 
Yook et al., 2004). Our observation supports the critiques presented in Khanin & 
Wit (2006) stati ng that most biological networks actually do not ideally follow 
the ubiquitous complex network properties. 

4.3.2 Topological enrichment in yeast under oxidative stress 

In the previous section we demonstrated that ubiquitous complex network prop-
erties cannot really be applied to biological networks. In this section we use the 
Topological Enrichment Analysis for Functional Subnetworks method (TEAFS) 
to study topological properties of a yeast network. This method is biologi cally 
more meaningful than the example in the previous section. Firstly, the example 
in the previous section was done in static manner. However, in reality in biology 
everything i s dynamic, so the curr ent t rend is to study ne twork pr operties i n 
dynamic manner (Luscombe et al., 2004; Klipp, 2007). The TEAFS method 
addresses this issue by enabling using a time series of a transcriptomics data set 
when studying topological properties. More specifically, we used a tr anscriptomics 
data set from oxidative stress (Gasch et al., 2000). In addition, another limitation 
of t he example in the previous s ection was the fact th at it w as done sole ly on 
metabolic l evel. However, there has been evidence that in biology phenotypes 
usually result from interplay of many interaction levels (Papin & Palsson, 2004; 
Lee et al., 2008; Li et al., 2010). We also addressed this issue by taking protein-
protein interactions a nd transcriptional r egulations along wi th metabolic level. 
More specifically, we took all metabolic reactions from KEGG (Kanehisa et al., 
2004), tr anscriptional regulations from TransFac (Mat ys et a l., 2003) and protein-
protein in teractions from DIP (Xen arios et a l., 2002) in ye ast Saccharomyces 
cerevisiae. In this network nodes a re prot eins, metabolites, genes and DN A 
binding sites, and edges are interactions and reactions. 

We first reconstructed a reference network and networks at time points in the 
way as described in Section 3.4. We investigated whether these networks follow 
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the power-law degree distribution and hierarchical network models by studying 
their degree and clustering coefficient distributions. We came up with the same 
observation as in the example in the previo us s ection: none of t hese networks 
followed the above-mentioned models. The results are visualized in Figure 4.1–4.38 
comprising in- a nd out-deg ree a nd clust ering coeffi cient distributions f or the 
reference and networks at time points. From all of these networks we can see the 
same result as we saw in the static yeast metabolic network in the previous sec-
tion: the degree distribution is not linearly decreasing, and the clustering coeffi-
cient distribution is not linearly decreasing and not constant. We therefore con-
cluded that we cannot apply the previous findings related to the ubiquitous com-
plex network properties (Barabási & Oltvai, 2004) t o this cas e study, and we 
realized that it is good to tailor the method. Therefore, we decided to divide the 
network in functional modules based on their Gene Ontology biological process 
(Gene On tology Cons ortium, 2008) mem berships in the w ay as described i n 
Section 3 .4. The modularity ha s been s hown t o b e a n important concept when 
studying biological networks in dynamic manner (Qi & Ge, 2006). 

                                                   

8 These results are not included in Publication III because of lack of space. They have 
been placed here in order to elevate their importance. 
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Figure 4.1. In-degree distributions for reference and networks at time points. 
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Figure 4.2. Out-degree distributions for reference and networks at time points. 
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Figure 4.3. Clustering coefficient distributions for reference and networks at time points. 

Before starting the actual TEAFS method we calculated average clustering coef-
ficient over the time series for each module. We selected modules of which av-
erage clustering coefficient were significantly more than zero for fur ther analy-
sis.  After  that  we  performed  the  TEAFS method  for  the  remaining  modules  in  
the way as described in Section 3.4. 

As a r esult of t he module activity analysis, we found for example that l ipid 
metabolism and phospholipid biosynthesis modules were highly active. We vali-
dated our results by performing in-house metabolomic analysis under dynamic 
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response to oxidative stress in our laboratory. As a result, we found that the con-
centrations of precursors of ceramide biosynthesis increased over time. We ma y 
thus conclude that it s eems that dynamic modules lead to the acc umulation of 
toxic lipids such as ceramides under oxidative stress. 
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5. Summary and conclusions 
In the research related to this t hesis we used a network biological appr oach to 
address various present day challenges of systems biology. We set up a visuali-
zation system for heterogeneous b iological data to address biologists’ need for 
integrative visualization (Gehlenborg et al., 2010; O’Donoghue et al., 2010). We 
showed the utility of this s ystem by a few examples. First we showed how pro-
tein-protein i nteractions make cross-talk b etween different sta ges o f y east me-
tabolism leading to novel hypotheses. In the second example we used a context 
based mapping to show how a Gene Ontology biological process term (Gene On-
tology Consortium, 2008) categorizes yeast metabolism into two parts. Then we 
applied these approaches to a medical context: we showed a case study in which 
we int egrated our in-house l ipidomics data into a biological network. We 
showed two examples demonstra ting how interactions between metabolic reac-
tions could p ossibly explain our previous associations b etween biological data 
and medical images, and one example demonstrating how biological entities are 
related to each other in a medical context. 

In addition , we develo ped the E nriched Molecular Path de tection method 
(EMPath). We showed a case study in which this method was used in the context 
of t ype 1 diabe tes mouse mode ls. As a most interesting result, we found that 
ether p hospholipid biosynthesis w as down- regulated in early in sulitis, con sist-
ently with a previous study in which serum ether lipids were diminish in children 
who later progressed to t ype 1 diabetes in c omparison with healthy children, 
which indicates that this method is capable for novel findings in molecular level. 
In addition , we performed topologi cal calculations on biological networks t o 
investigate whether they follow ubiquitous complex network properties, and in 
contrast to initial tentative findings in complex network theory we observed that 
the ubiquitous c omplex network pr operties a re not present in t hese networks, 
which is consistent with rec ent critiques to the ubi quitous complex ne twork 
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properties (Lima-Mendez & Helden, 2009). We ther efore tailored a method 
called Topological Enrichment Analysis of Functional Subnetworks (TEAFS) so 
that it analyzes modules of networks. We showed that this method is capable of 
predicting the accumulation of t oxic lipids in yeast Saccharomyces cerevisiae, 
which we validated by in-house metabolomic analysis. 

Naturally there are many remaining challenges. For example, megNet has po-
tential to be extended to other usages. One possible direction is t o progress in 
integration with lipid pathway reconstruction methods that are p resented in 
Laxmana R. Yetukuri’s PhD disse rtation (Ye tukuri, 2010). We have a lready 
done some preliminary work in this direction, for example in the medical data 
image data case study (S ection 4.1.3) we used m egNet t o integrate l ipidomics 
data into a molecular interaction network. 

Also, I believe the EMPath method can be used in the context of any pheno-
type. In this thesis we showed its utility in the context of type 1 diabetes mouse 
models but the same should work in many other case studies. We have already 
been using it in the context of microbial and other type 1 diabetes mouse strains. 
Preliminary results have shown that this method seems to be capable of making 
interesting findings also in these studies. For example, we have used it to detect 
metabolic paths a ssociated with the correlation of gene expression and protein 
production rate in a fungal species (Arvas et al., submitted). 

In addition, I think megNet would benefit from bei ng p ublicly available a s 
pointed out in Publication V. It is probably not reasonable t o make the whole 
megNet publicly available because of e. g. restrictions in database licenses. How-
ever, it would make sense to make parts of megNet publicly available, for example 
network construction could be implemented as an open source Cytoscape plug-in, 
which could lead to good complementary efforts between Cytoscpape (Cline et al., 
2007) and megNet: Cytoscape is a popular generic network visualization tool and 
megNet would provide a data integration framework for Cytoscape. Also, the 
EMPath method would probably benefit from b eing publicly available. This 
would enable anybody in the systems biology community to use the method in the 
context of his or her data, which would probably lead to many novel findings. For 
example, Gene Set Enrichment Analysis method (GSEA) (Subramanian et al., 
2005) is publicly available, and it is widely used in the systems biology community. 

In addition, megNet would probably benefit from b etter usability. In o rder to 
address this challenge, we have been implementing user interfaces as web appli-
cations. As first step towards this effort, we separated a part of the user interface 
into a web application in Publication V. 
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Network biology uses a graph theoretic approach to characterize biological systems 
comprehensively as a complex network of interactions. This approach has led to 
practical applications spanning from disease elucidation to biotechnology during 
the last few years.

In this thesis we applied a network approach in order to model heterogene-
ous biological interactions. We developed a system for visualizing heterogeneous 
biological data, and showed its utility by biological network visualization exam-
ples. In addition, we developed a novel biological network analysis method that 
detects phenotypic specific molecular paths in an integrated molecular interaction 
network. We showed the utility of this method in the context of type 1 diabetes 
mouse models, and found that ether phospholipid biosynthesis was down-regulated 
in early state of type 1 diabetes, which was consistent with recent clinical findings. 
Also, we performed topological calculations on biological networks, and obtained 
consistent results with recent critiques of ubiquitous complex network properties 
describing the biological networks. This gave motivation to tailor a topological 
enrichment analysis method. We showed the utility of this method by exposing an 
integrated yeast network to oxidative stress. Results showed that oxidative stress 
leads to accumulation of toxic lipids.
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