2,287 research outputs found

    Hipomagnesemia em bovinos de corte da regiĂŁo central da Argentina: estudo retrospectivo.

    Get PDF
    Hypomagnesaemia (grass tetany) is a metabolic disorder of ruminants due to a reduced dietary intake of magnesium (primary deficiency), incorrect digestibility or associated metabolic factors reducing Mg intake (secondary deficiency). Grass tetany is a production disease responsible for important economic losses in beef herds from Argentina. Several factors influence the development of grass tetany in cattle, including physiological status, weather, soil and forage. This research described a retrospective analysis over the past 20 years, revising the cases of beef cattle clinical hypomagnesaemia registered at the Veterinary Diagnostic Service in INTA Balcarce, Argentina.Hipomagnesemia é um distúrbio metabólico de ruminantes devido a uma redução na absorção de magnésio (deficiência primária), digestibilidade incorreta ou fatores metabólicos associados que reduzem a ingestão de Mg (deficiência secundária). Hipomagnesemia é uma doença de produção responsável por importantes perdas econômicas em rebanhos de corte da Argentina. Vários fatores influenciam o desenvolvimento da hipomagnesemia em bovinos, incluindo fatores fisiológicos, clima, solo e forragem. Este trabalho descreve uma análise retrospectiva dos últimos 20 anos, revisando os casos de hipomagnesemia clínica em bovinos de corte registrados no Serviço de Diagnóstico Veterinário do INTA Balcarce, Argentina.Fil: Cantón, Germán José. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.Fil: Fernández, Eduardo Luján. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.Fil: Poo, Juan Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.Fil: Späth, Ernesto Juan Alfredo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.Fil: Odriozola, Ernesto Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.Fil: Monterubbianesi, María Gloria. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Moreno, Fabiana Carina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina

    Control de robots industriales con realimentaciĂłn visual: Image-Based Visual Servoing

    Full text link
    Este artículo docente establece las bases del control de robots por realimentación visual, en concreto el control en el espacio de la imagen. Al terminar el artículo, el alumno será capaz de definir el concepto conocido como visual servoing, sus propiedades generales así como establecer las diferencias existentes entre un control realizado en el espacio Cartesiano y un control en el espacio de la imagen. El alumno podrá además aprender las propiedades principales de este último con ejemplos y preguntas interactivas a lo largo del artículo.Solanes Galbis, JE.; Gracia Calandin, LI. (2021). Control de robots industriales con realimentación visual: Image-Based Visual Servoing. http://hdl.handle.net/10251/160717DE

    RepresentaciĂłn y caracterizaciĂłn de la respuesta temporal de los sistemas de segundo orden

    Full text link
    Este artículo docente define los sistemas de segundo orden sin ceros en el dominio temporal y en el dominio de Laplace. Al terminar el artículo, el alumno será capaz de definir y obtener matemáticamente las características temporales de este tipo de sistemas. El alumno podrá además aprender las propiedades principales de este último con ejemplos y preguntas interactivas a lo largo del artículo.Solanes Galbis, JE.; Gracia Calandin, LI. (2022). Representación y caracterización de la respuesta temporal de los sistemas de segundo orden. http://hdl.handle.net/10251/18481

    PWM and PFM for visual servoing in fully decoupled approaches

    Full text link
    In this paper, novel visual servoing techniques based on Pulse Width Modulation (PWM) and Pulse Frequency Modulation (PFM) are presented. In order to apply previous pulse modulations, a fully decoupled position based visual servoing approach (i.e. with block-diagonal interaction matrix) is considered, controlling independently translational and rotational camera motions. These techniques, working at high frequency, could be considered to address the sensor latency problem inherent in visual servoing systems. The expected appearance of ripple due to the concentration of the control action in pulses is quantified and analyzed under simulated scenario. This high frequency ripple does not affect the system performance since it is filtered by the manipulator dynamics. On the contrary it can be seen as a dither signal to minimize the impact of friction and overcome back-lashing.This work was supported in part by the Spanish Government under Grant BES-2010-038486 and Project DPI2013-42302-R.Muñoz Benavent, P.; Solanes Galbis, JE.; Gracia Calandin, LI.; Tornero Montserrat, J. (2015). PWM and PFM for visual servoing in fully decoupled approaches. Robotics and Autonomous Systems. 65(1):57-64. doi:10.1016/j.robot.2014.11.011S576465

    Robust auto tool change for industrial robots using visual servoing

    Full text link
    This is an Author's Accepted Manuscript of an article published in Muñoz-Benavent, Pau, Solanes Galbis, Juan Ernesto, Gracia Calandin, Luis Ignacio, Tornero Montserrat, Josep. (2019). Robust auto tool change for industrial robots using visual servoing.International Journal of Systems Science, 50, 2, 432-449. © Taylor & Francis, available online at: http://doi.org/10.1080/00207721.2018.1562129[EN] This work presents an automated solution for tool changing in industrial robots using visual servoing and sliding mode control. The robustness of the proposed method is due to the control law of the visual servoing, which uses the information acquired by a vision system to close a feedback control loop. Furthermore, sliding mode control is simultaneously used in a prioritised level to satisfy the constraints typically present in a robot system: joint range limits, maximum joint speeds and allowed workspace. Thus, the global control accurately places the tool in the warehouse, but satisfying the robot constraints. The feasibility and effectiveness of the proposed approach is substantiated by simulation results for a complex 3D case study. Moreover, real experimentation with a 6R industrial manipulator is also presented to demonstrate the applicability of the method for tool changing.This work was supported in part by the Ministerio de Economia, Industria y Competitividad, Gobierno de Espana under Grant BES-2010-038486 and Project DPI2017-87656-C2-1-R.Muñoz-Benavent, P.; Solanes Galbis, JE.; Gracia Calandin, LI.; Tornero Montserrat, J. (2019). Robust auto tool change for industrial robots using visual servoing. International Journal of Systems Science. 50(2):432-449. https://doi.org/10.1080/00207721.2018.1562129S43244950

    Combining haptics and inertial motion capture to enhance remote control of a dual-arm robot

    Full text link
    [EN] High dexterity is required in tasks in which there is contact between objects, such as surface conditioning (wiping, polishing, scuffing, sanding, etc.), specially when the location of the objects involved is unknown or highly inaccurate because they are moving, like a car body in automotive industry lines. These applications require the human adaptability and the robot accuracy. However, sharing the same workspace is not possible in most cases due to safety issues. Hence, a multi-modal teleoperation system combining haptics and an inertial motion capture system is introduced in this work. The human operator gets the sense of touch thanks to haptic feedback, whereas using the motion capture device allows more naturalistic movements. Visual feedback assistance is also introduced to enhance immersion. A Baxter dual-arm robot is used to offer more flexibility and manoeuvrability, allowing to perform two independent operations simultaneously. Several tests have been carried out to assess the proposed system. As it is shown by the experimental results, the task duration is reduced and the overall performance improves thanks to the proposed teleoperation method.This research was funded by Generalitat Valenciana (Grants GV/2021/074 and GV/2021/181) and by the SpanishGovernment (Grants PID2020-118071GB-I00 and PID2020-117421RBC21 funded by MCIN/AEI/10.13039/501100011033). This work was also supported byCoordenacao de Aperfeiaoamento de Pessoal de Nivel Superior (CAPES Brasil) under Finance Code 001, by CEFET-MG, and by a Royal Academy of Engineering Chair in Emerging Technologies to YD.Girbés-Juan, V.; Schettino, V.; Gracia Calandin, LI.; Solanes, JE.; Demiris, Y.; Tornero, J. (2022). Combining haptics and inertial motion capture to enhance remote control of a dual-arm robot. Journal on Multimodal User Interfaces. 16(2):219-238. https://doi.org/10.1007/s12193-021-00386-8219238162Hägele M, Nilsson K, Pires JN, Bischoff R (2016) Industrial robotics. Springer, Cham, pp 1385–1422. https://doi.org/10.1007/978-3-319-32552-1_54Hokayem PF, Spong MW (2006) Bilateral teleoperation: an historical survey. Automatica 42(12):2035–2057. https://doi.org/10.1016/j.automatica.2006.06.027Son HI (2019) The contribution of force feedback to human performance in the teleoperation of multiple unmanned aerial vehicles. J Multimodal User Interfaces 13(4):335–342Jones B, Maiero J, Mogharrab A, Aguliar IA, Adhikari A, Riecke BE, Kruijff E, Neustaedter C, Lindeman RW (2020) Feetback: augmenting robotic telepresence with haptic feedback on the feet. In: Proceedings of the 2020 international conference on multimodal interaction, pp 194–203Merrad W, Héloir A, Kolski C, Krüger A (2021) Rfid-based tangible and touch tabletop for dual reality in crisis management context. J Multimodal User Interfaces. https://doi.org/10.1007/s12193-021-00370-2Schettino V, Demiris Y (2019) Inference of user-intention in remote robot wheelchair assistance using multimodal interfaces. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 4600–4606Casper J, Murphy RR (2003) Human–robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Trans Syst Man Cybern Part B (Cybern) 33(3):367–385. https://doi.org/10.1109/TSMCB.2003.811794Chen JY (2010) UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Ergonomics 53(8):940–950. https://doi.org/10.1080/00140139.2010.500404 (pMID: 20658388.)Aleotti J, Micconi G, Caselli S, Benassi G, Zambelli N, Bettelli M, Calestani D, Zappettini A (2019) Haptic teleoperation of UAV equipped with gamma-ray spectrometer for detection and identification of radio-active materials in industrial plants. In: Tolio T, Copani G, Terkaj W (eds) Factories of the future: the Italian flagship initiative. Springer, Cham, pp 197–214. https://doi.org/10.1007/978-3-319-94358-9_9Santos Carreras L (2012) Increasing haptic fidelity and ergonomics in teleoperated surgery. PhD Thesis, EPFL, Lausanne, pp 1–188. https://doi.org/10.5075/epfl-thesis-5412Hatzfeld C, Neupert C, Matich S, Braun M, Bilz J, Johannink J, Miller J, Pott PP, Schlaak HF, Kupnik M, Werthschützky R, Kirschniak A (2017) A teleoperated platform for transanal single-port surgery: ergonomics and workspace aspects. In: IEEE world haptics conference (WHC), pp 1–6. https://doi.org/10.1109/WHC.2017.7989847Burns JO, Mellinkoff B, Spydell M, Fong T, Kring DA, Pratt WD, Cichan T, Edwards CM (2019) Science on the lunar surface facilitated by low latency telerobotics from a lunar orbital platform-gateway. Acta Astronaut 154:195–203. https://doi.org/10.1016/j.actaastro.2018.04.031Sivčev S, Coleman J, Omerdić E, Dooly G, Toal D (2018) Underwater manipulators: a review. Ocean Eng 163:431–450. https://doi.org/10.1016/j.oceaneng.2018.06.018Abich J, Barber DJ (2017) The impact of human–robot multimodal communication on mental workload, usability preference, and expectations of robot behavior. J Multimodal User Interfaces 11(2):211–225. https://doi.org/10.1007/s12193-016-0237-4Hong A, Lee DG, Bülthoff HH, Son HI (2017) Multimodal feedback for teleoperation of multiple mobile robots in an outdoor environment. J Multimodal User Interfaces 11(1):67–80. https://doi.org/10.1007/s12193-016-0230-yKatyal KD, Brown CY, Hechtman SA, Para MP, McGee TG, Wolfe KC, Murphy RJ, Kutzer MDM, Tunstel EW, McLoughlin MP, Johannes MS (2014) Approaches to robotic teleoperation in a disaster scenario: from supervised autonomy to direct control. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1874–1881. https://doi.org/10.1109/IROS.2014.6942809Niemeyer G, Preusche C, Stramigioli S, Lee D (2016) Telerobotics. Springer, Cham, pp 1085–1108. https://doi.org/10.1007/978-3-319-32552-1_43Li J, Li Z, Hauser K (2017) A study of bidirectionally telepresent tele-action during robot-mediated handover. In: Proceedings—IEEE international conference on robotics and automation, pp 2890–2896. https://doi.org/10.1109/ICRA.2017.7989335Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S (2018) Sfv: reinforcement learning of physical skills from videos. ACM Trans. Graph. 37(6):178:1-178:14. https://doi.org/10.1145/3272127.3275014Coleca F, State A, Klement S, Barth E, Martinetz T (2015) Self-organizing maps for hand and full body tracking. Neurocomputing 147: 174–184. Advances in self-organizing maps subtitle of the special issue: selected papers from the workshop on self-organizing maps 2012 (WSOM 2012). https://doi.org/10.1016/j.neucom.2013.10.041Von Marcard T, Rosenhahn B, Black MJ, Pons-Moll G (2017) Sparse inertial poser: automatic 3d human pose estimation from sparse Imus. In: Computer graphics forum, vol 36. Wiley, pp 349–360Zhao J (2018) A review of wearable IMU (inertial-measurement-unit)-based pose estimation and drift reduction technologies. J Phys Conf Ser 1087:042003. https://doi.org/10.1088/1742-6596/1087/4/042003Malleson C, Gilbert A, Trumble M, Collomosse J, Hilton A, Volino M (2018) Real-time full-body motion capture from video and IMUs. In: Proceedings—2017 international conference on 3D vision, 3DV 2017 (September), pp 449–457. https://doi.org/10.1109/3DV.2017.00058Du G, Zhang P, Mai J, Li Z (2012) Markerless kinect-based hand tracking for robot teleoperation. Int J Adv Robot Syst 9(2):36. https://doi.org/10.5772/50093Çoban M, Gelen G (2018) Wireless teleoperation of an industrial robot by using myo arm band. In: International conference on artificial intelligence and data processing (IDAP), pp 1–6. https://doi.org/10.1109/IDAP.2018.8620789Lipton JI, Fay AJ, Rus D (2018) Baxter’s homunculus: virtual reality spaces for teleoperation in manufacturing. IEEE Robot Autom Lett 3(1):179–186. https://doi.org/10.1109/LRA.2017.2737046Zhang T, McCarthy Z, Jow O, Lee D, Chen X, Goldberg K, Abbeel P (2018) Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. In: IEEE international conference on robotics and automation (ICRA), pp 5628–5635. https://doi.org/10.1109/ICRA.2018.8461249Hannaford B, Okamura AM (2016) Haptics. Springer, Cham, pp 1063–1084. https://doi.org/10.1007/978-3-319-32552-1_42Rodríguez J-L, Velàzquez R (2012) Haptic rendering of virtual shapes with the Novint Falcon. Proc Technol 3:132–138. https://doi.org/10.1016/J.PROTCY.2012.03.014Teklemariam HG, Das AK (2017) A case study of phantom omni force feedback device for virtual product design. Int J Interact Des Manuf (IJIDeM) 11(4):881–892. https://doi.org/10.1007/s12008-015-0274-3Karbasizadeh N, Zarei M, Aflakian A, Masouleh MT, Kalhor A (2018) Experimental dynamic identification and model feed-forward control of Novint Falcon haptic device. Mechatronics 51:19–30. https://doi.org/10.1016/j.mechatronics.2018.02.013Georgiou T, Demiris Y (2017) Adaptive user modelling in car racing games using behavioural and physiological data. User Model User-Adapted Interact 27(2):267–311. https://doi.org/10.1007/s11257-017-9192-3Son HI (2019) The contribution of force feedback to human performance in the teleoperation of multiple unmanned aerial vehicles. J Multimodal User Interfaces 13(4):335–342. https://doi.org/10.1007/s12193-019-00292-0Ramírez-Fernández C, Morán AL, García-Canseco E (2015) Haptic feedback in motor hand virtual therapy increases precision and generates less mental workload. In: 2015 9th international conference on pervasive computing technologies for healthcare (PervasiveHealth), pp 280–286. https://doi.org/10.4108/icst.pervasivehealth.2015.260242Saito Y, Raksincharoensak P (2019) Effect of risk-predictive haptic guidance in one-pedal driving mode. Cognit Technol Work 21(4):671–684. https://doi.org/10.1007/s10111-019-00558-3Girbés V, Armesto L, Dols J, Tornero J (2016) Haptic feedback to assist bus drivers for pedestrian safety at low speed. IEEE Trans Haptics 9(3):345–357. https://doi.org/10.1109/TOH.2016.2531686Girbés V, Armesto L, Dols J, Tornero J (2017) An active safety system for low-speed bus braking assistance. IEEE Trans Intell Transp Syst 18(2):377–387. https://doi.org/10.1109/TITS.2016.2573921Escobar-Castillejos D, Noguez J, Neri L, Magana A, Benes B (2016) A review of simulators with haptic devices for medical training. J Med Syst 40(4):104. https://doi.org/10.1007/s10916-016-0459-8Coles TR, Meglan D, John NW (2011) The role of haptics in medical training simulators: a survey of the state of the art. IEEE Trans Haptics 4(1):51–66. https://doi.org/10.1109/TOH.2010.19Okamura AM, Verner LN, Reiley CE, Mahvash M (2010) Haptics for robot-assisted minimally invasive surgery. In: Kaneko M, Nakamura Y (eds) Robotics research. Springer tracts in advanced robotics, vol 66. Springer, Berlin, pp 361–372. https://doi.org/10.1007/978-3-642-14743-2_30Ehrampoosh S, Dave M, Kia MA, Rablau C, Zadeh MH (2013) Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies. Comput Aided Surg 18(5–6):129–141. https://doi.org/10.3109/10929088.2013.839744Ju Z, Yang C, Li Z, Cheng L, Ma H (2014) Teleoperation of humanoid Baxter robot using haptic feedback. In: 2014 international conference on multisensor fusion and information integration for intelligent systems (MFI). IEEE, pp 1–6. https://doi.org/10.1109/MFI.2014.6997721Clark JP, Lentini G, Barontini F, Catalano MG, Bianchi M, O’Malley MK (2019) On the role of wearable haptics for force feedback in teleimpedance control for dual-arm robotic teleoperation. In: International conference on robotics and automation (ICRA), pp 5187–5193. https://doi.org/10.1109/ICRA.2019.8793652Gracia L, Solanes JE, Muñoz-Benavent P, Miro JV, Perez-Vidal C, Tornero J (2018) Adaptive sliding mode control for robotic surface treatment using force feedback. Mechatronics 52:102–118. https://doi.org/10.1016/j.mechatronics.2018.04.008Zhu D, Xu X, Yang Z, Zhuang K, Yan S, Ding H (2018) Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments. Tribol Int 120:93–98. https://doi.org/10.1016/j.triboint.2017.12.043Smith C, Karayiannidis Y, Nalpantidis L, Gratal X, Qi P, Dimarogonas DV, Kragic D (2012) Dual arm manipulation—a survey. Robot Auton Syst 60(10):1340–1353. https://doi.org/10.1016/j.robot.2012.07.005Girbés-Juan V, Schettino V, Demiris Y, Tornero J (2021) Haptic and visual feedback assistance for dual-arm robot teleoperation in surface conditioning tasks. IEEE Trans Haptics 14(1):44–56. https://doi.org/10.1109/TOH.2020.3004388Tunstel EW Jr, Wolfe KC, Kutzer MD, Johannes MS, Brown CY, Katyal KD, Para MP, Zeher MJ (2013) Recent enhancements to mobile bimanual robotic teleoperation with insight toward improving operator control. Johns Hopkins APL Tech Digest 32(3):584García A, Solanes JE, Gracia L, Muñoz-Benavent P, Girbés-Juan V, Tornero J (2021) Bimanual robot control for surface treatment tasks. Int J Syst Sci. https://doi.org/10.1080/00207721.2021.1938279Jasim IF, Plapper PW, Voos H (2014) Position identification in force-guided robotic peg-in-hole assembly tasks. Proc CIRP 23((C)):217–222. https://doi.org/10.1016/j.procir.2014.10.077Song HC, Kim YL, Song JB (2016) Guidance algorithm for complex-shape peg-in-hole strategy based on geometrical information and force control. Adv Robot 30(8):552–563. https://doi.org/10.1080/01691864.2015.1130172Kramberger A, Gams A, Nemec B, Chrysostomou D, Madsen O, Ude A (2017) Generalization of orientation trajectories and force-torque profiles for robotic assembly. Robot Auton Syst 98:333–346. https://doi.org/10.1016/j.robot.2017.09.019Pliego-Jiménez J, Arteaga-Pérez MA (2015) Adaptive position/force control for robot manipulators in contact with a rigid surface with unknown parameters. In: European control conference (ECC), pp 3603–3608. https://doi.org/10.1109/ECC.2015.7331090Gierlak P, Szuster M (2017) Adaptive position/force control for robot manipulator in contact with a flexible environment. Robot Auton Syst 95:80–101. https://doi.org/10.1016/j.robot.2017.05.015Solanes JE, Gracia L, Muñoz-Benavent P, Miro JV, Girbés V, Tornero J (2018) Human–robot cooperation for robust surface treatment using non-conventional sliding mode control. ISA Trans 80:528–541. https://doi.org/10.1016/j.isatra.2018.05.013Ravandi AK, Khanmirza E, Daneshjou K (2018) Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control. Appl Soft Comput 70:864–874. https://doi.org/10.1016/j.asoc.2018.05.048Solanes JE, Gracia L, Muñoz-Benavent P, Esparza A, Miro JV, Tornero J (2018) Adaptive robust control and admittance control for contact-driven robotic surface conditioning. Robot Comput Integr Manuf 54:115–132. https://doi.org/10.1016/j.rcim.2018.05.003Perez-Vidal C, Gracia L, Sanchez-Caballero S, Solanes JE, Saccon A, Tornero J (2019) Design of a polishing tool for collaborative robotics using minimum viable product approach. Int J Comput Integr Manuf 32(9):848–857. https://doi.org/10.1080/0951192X.2019.1637026Chen F, Zhao H, Li D, Chen L, Tan C, Ding H (2019) Contact force control and vibration suppression in robotic polishing with a smart end effector. Robot Comput Integr Manuf 57:391–403. https://doi.org/10.1016/j.rcim.2018.12.019Mohammad AEK, Hong J, Wang D, Guan Y (2019) Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications. Robot Comput Integr Manuf 55:65–75. https://doi.org/10.1016/j.rcim.2018.07.005Waldron KJ, Schmiedeler J (2016) Kinematics. Springer, Cham, pp 11–36. https://doi.org/10.1007/978-3-319-32552-1_2Featherstone R, Orin DE (2016) Dynamics. Springer, Cham, pp 37–66. https://doi.org/10.1007/978-3-319-32552-1_3Wen K, Necsulescu D, Sasiadek J (2008) Haptic force control based on impedance/admittance control aided by visual feedback. Multimed Tools Appl 37(1):39–52. https://doi.org/10.1007/s11042-007-0172-1Tzafestas C, Velanas S, Fakiridis G (2008) Adaptive impedance control in haptic teleoperation to improve transparency under time-delay. In: IEEE international conference on robotics and automation, pp 212–219. https://doi.org/10.1109/ROBOT.2008.4543211Chiaverini S, Oriolo G, Maciejewski AA (2016) Redundant robots. Springer, Cham, pp 221–242. https://doi.org/10.1007/978-3-319-32552-1_10Ogata K (1987) Discrete-time control systems. McGraw-Hill, New YorkGarcía A, Girbés-Juan V, Solanes JE, Gracia L, Perez-Vidal C, Tornero J (2020) Human–robot cooperation for surface repair combining automatic and manual modes. IEEE Access 8:154024–154035. https://doi.org/10.1109/ACCESS.2020.301450

    Efecto del nivel de concentrado sobre el perfil de ácidos grasos de la leche de vacas holstein en pastoreo

    Get PDF
    El contenido de ácido linoléico conjugado (CLA c9 t11) en leche depende principalmente de la producción en el rumen de ácido vaccénico, el cual está influenciado por el aporte de los ácidos linoléico y linolénico en la dieta. El objetivo de este estudio fue evaluar el efecto del nivel de concentrado en la producción, composición y perfil de ácidos grasos de la leche de nueve vacas Holstein en praderas asociadas de gramíneas y leguminosas. El diseño experimental fue un cuadro latino 3×3 y los tratamientos fueron: 1) 8 kg concentrado y 8 h en la pradera (8c); 2) 5 kg concentrado y 12 h en la pradera (5c), y 3) 3 kg de concentrado y 12 h en la pradera (3c). Los datos se analizaron con el procedimiento MIXTO de SAS y las medias de los tratamientos se compararon con la prueba de Tukey (p £ 0.05). La producción de leche y el contenido de grasa, proteína y lactosa fueron mayores (p £ 0.05) en el tratamiento 8c. La concentración de los ácidos grasos (AG) láurico, mirís - tico y palmítico se incrementó en la leche (p £ 0.05) al aumen - tar el nivel de concentrado. El contenido de los AG de cadena larga ( ³ C18) fue mayor (p £ 0.05) con 3 kg de concentrado, excepto para C18:2 c9c12. La reducción del concentrado su - ministrado a vacas Holstein en praderas asociadas disminuye el contenido de AG saturados, pero aumenta el contenido de los insaturados, especialmente de los ácidos oleico, linoléni - co, vaccénico y CLA c9 t11

    A Methodology to Produce Augmented-Reality Guided Tours in Museums for Mixed-Reality Headsets

    Full text link
    [EN] In recent years, the use of technology in the museum context has changed radically. It has switched from the display of information to offering emotive, immersive, and rich experiences with heritage. Virtual interactive media have the potential to put museums back into a relevant place in our increasingly digital society. The emergence of augmented-reality glasses offers the possibility to test and implement new methodologies compatible with this aim. However, most of the first examples developed in recent years did not take advantage of the possibilities of this new medium. This paper presents a novel methodology for producing mixed-reality applications for museums and heritage sites, with an intuitive, immersive, and natural way of operating. An experimental prototype designed for the archaeological museum of the Almoina is shown in the paper to demonstrate the benefits of the proposed system and methodology of production. In addition, the paper shows the results of several tests.This research was founded by the Generalitat Valenciana (Grant GV/2021/181) and by the Spanish Government (Grant PID2020-117421RB-C21 funded by MCIN/AEI/10.13039/501100011033).Martí-Testón, A.; Muñoz García, A.; Solanes Galbis, JE.; Gracia Calandin, LI.; Tornero Montserrat, J. (2021). A Methodology to Produce Augmented-Reality Guided Tours in Museums for Mixed-Reality Headsets. Electronics. 10(23):1-21. https://doi.org/10.3390/electronics10232956121102

    Robust fulfillment of constraints in robot visual servoing

    Full text link
    [EN] In this work, an approach based on sliding mode ideas is proposed to satisfy constraints in robot visual servoing. In particular, different types of constraints are defined in order to: fulfill the visibility constraints (camera fieldof-view and occlusions) for the image features of the detected object; to avoid exceeding the joint range limits and maximum joint speeds; and to avoid forbidden areas in the robot workspace. Moreover, another task with low-priority is considered to track the target object. The main advantages of the proposed approach are low computational cost, robustness and fully utilization of the allowed space for the constraints. The applicability and effectiveness of the proposed approach is demonstrated by simulation results for a simple 2D case and a complex 3D case study. Furthermore, the feasibility and robustness of the proposed approach is substantiated by experimental results using a conventional 6R industrial manipulator.This work was supported in part by the Spanish Government under grants BES-2010-038486 and Project DPI2013-42302-R, and the Generalitat Valenciana under grants VALi+d APOSTD/2016/044 and BEST/2017/029.Muñoz-Benavent, P.; Gracia Calandin, LI.; Solanes Galbis, JE.; Esparza Peidro, A.; Tornero Montserrat, J. (2018). Robust fulfillment of constraints in robot visual servoing. Control Engineering Practice. 71(1):79-95. https://doi.org/10.1016/j.conengprac.2017.10.017S799571

    Bimanual robot control for surface treatment tasks

    Full text link
    This is an Author's Accepted Manuscript of an article published in Alberto García, J. Ernesto Solanes, Luis Gracia, Pau Muñoz-Benavent, Vicent Girbés-Juan & Josep Tornero (2022) Bimanual robot control for surface treatment tasks, International Journal of Systems Science, 53:1, 74-107, DOI: 10.1080/00207721.2021.1938279 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/00207721.2021.1938279[EN] This work develops a method to perform surface treatment tasks using a bimanual robotic system, i.e. two robot arms cooperatively performing the task. In particular, one robot arm holds the work-piece while the other robot arm has the treatment tool attached to its end-effector. Moreover, the human user teleoperates all the six coordinates of the former robot arm and two coordinates of the latter robot arm, i.e. the teleoperator can move the treatment tool on the plane given by the work- piece surface. Furthermore, a force sensor attached to the treatment tool is used to automatically attain the desired pressure between the tool and the workpiece and to automatically keep the tool orientation orthogonal to the workpiece surface. In addition, to assist the human user during the teleoperation, several constraints are defined for both robot arms in order to avoid exceeding the allowed workspace, e.g. to avoid collisions with other objects in the environment. The theory used in this work to develop the bimanual robot control relies on sliding mode control and task prioritisation. Finally, the feasibility and effectiveness of the method are shown through experimental results using two robot arms.This work was supported by Generalitat Valenciana [grant numbers ACIF/2019/007 and GV/2021/181] and Spanish Ministry of Science and Innovation [grant number PID2020117421RB-C21].García-Fernández, A.; Solanes, JE.; Gracia Calandin, LI.; Muñoz-Benavent, P.; Girbés-Juan, V.; Tornero, J. (2022). Bimanual robot control for surface treatment tasks. International Journal of Systems Science. 53(1):74-107. https://doi.org/10.1080/00207721.2021.19382797410753
    • …
    corecore