64 research outputs found

    Calculation of 3D genome structures for comparison of chromosome conformation capture experiments with microscopy: An evaluation of single-cell Hi-C protocols.

    Get PDF
    Single-cell chromosome conformation capture approaches are revealing the extent of cell-to-cell variability in the organization and packaging of genomes. These single-cell methods, unlike their multi-cell counterparts, allow straightforward computation of realistic chromosome conformations that may be compared and combined with other, independent, techniques to study 3D structure. Here we discuss how single-cell Hi-C and subsequent 3D genome structure determination allows comparison with data from microscopy. We then carry out a systematic evaluation of recently published single-cell Hi-C datasets to establish a computational approach for the evaluation of single-cell Hi-C protocols. We show that the calculation of genome structures provides a useful tool for assessing the quality of single-cell Hi-C data because it requires a self-consistent network of interactions, relating to the underlying 3D conformation, with few errors, as well as sufficient longer-range cis- and trans-chromosomal contacts

    Dynamic monitoring of single cell lysis in an impedance-based microfluidic device.

    Get PDF
    A microfluidic device that is capable of trapping and sensing dynamic variations in the electrical properties of individual cells is demonstrated. The device is applied to the real-time recording of impedance measurements of mouse embryonic stem cells (mESCs) during the process of membrane lysis, with the resulting changes in the electrical properties of cells during this process being quantitatively tracked over time. It is observed that the impedance magnitude decreases dramatically after cell membrane lysis. A significant shift in the phase spectrum is also observed during the time course of this process. By fitting experimental data to physical models, the electrical parameters of cells can be extracted and parameter variations quantified during the process. In the cell lysis experiments, the equivalent conductivity of the cell membrane is found to increase significantly due to pore formation in the membrane during lysis. An increase in the specific capacitance of the membrane is also observed. On the other hand, the conductivity of the cytoplasm is observed to decrease, which may be explained the fact that excess water enters the cell through the gradual permeabilization of the membrane during lysis. Cells can be trapped in the device for periods up to several days, and their electrical response can be monitored by real-time impedance measurements in a label-free and non-invasive manner. Furthermore, due to the highly efficient single cell trapping capacity of the device, a number of cells can be trapped and held in separate wells for concurrent parallel experiments, allowing for the possibility of stepped parametric experiments and studying cell heterogeneity by combining measurements across the array.Biotechnology and Biological Sciences Research Council (Grant ID: BB/K013726/1)This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10544-016-0081-

    Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast

    Get PDF
    The inheritance of the histone H3 variant CENP-A in nucleosomes at centromeres following DNA replication is mediated by an epigenetic mechanism. To understand the process of epigenetic inheritance, or propagation of histones and histone variants, as nucleosomes are disassembled and reassembled in living eukaryotic cells, we have explored the feasibility of exploiting photo-activated localization microscopy (PALM). PALM of single molecules in living cells has the potential to reveal new concepts in cell biology, providing insights into stochastic variation in cellular states. However, thus far, its use has been limited to studies in bacteria or to processes occurring near the surface of eukaryotic cells. With PALM, one literally observes and 'counts' individual molecules in cells one-by-one and this allows the recording of images with a resolution higher than that determined by the diffraction of light (the so-called super-resolution microscopy). Here, we investigate the use of different fluorophores and develop procedures to count the centromere-specific histone H3 variant CENP-A(Cnp1) with single-molecule sensitivity in fission yeast (Schizosaccharomyces pombe). The results obtained are validated by and compared with ChIP-seq analyses. Using this approach, CENP-A(Cnp1) levels at fission yeast (S. pombe) centromeres were followed as they change during the cell cycle. Our measurements show that CENP-A(Cnp1) is deposited solely during the G2 phase of the cell cycle

    Metal ion co-ordination in the DNA binding domain of the yeast transcriptional activator GAL4

    Get PDF
    AbstractThe structure of the DNA binding domain of the yeast transcriptional activator GAL4 was investigated by extended X-ray fine structure (e.x.a.f.s.). Two samples of GAL4 were studied, one containing cadmium as a structural probe (Cd(II)GAL4) and the other containing the ‘native’ zinc (Zn(Il)-GAL4). The results suggest that the structure of the DNA binding domain of GAL4 contains a two metal ion cluster distinguishing it from the ‘zinc finger’ proteins typified by the Xenopus laevis transcription factor TFIIIA

    Interaction between Anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site

    Get PDF
    Anillin, one of the first factors recruited to the cleavage site during cytokinesis, interacts with actin, myosin II and septins, and is essential for proper organization of the actomyosin contractile ring. We employed affinity-purification methodology coupled with mass spectrometry to identify Anillin-interacting molecules in Drosophila cells. We isolated several actin and myosin proteins, three of the five Drosophila septins and RacGAP50C (Tum), a component of the centralspindlin complex. Using drug and RNA interference (RNAi) treatments we established that F-actin is essential for Anillin cortical localization in prometaphase but not for its accumulation at the cleavage furrow after anaphase onset. Moreover, septins were not recruited to the cleavage site in cells in which Anillin was knocked down by RNAi, but localized to central-spindle microtubules, suggesting that septins travel along microtubules to interact with Anillin at the furrow. Finally, we demonstrate that RacGAP50C is necessary for Anillin accumulation at the furrow and that the two proteins colocalize in vivo and interact in vitro. Thus, in addition to its role in activating RhoA signalling, RacGAP50C also controls the proper assembly of the actomyosin ring by interacting with Anillin at the cleavage furrow

    Interaction between Anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site

    Get PDF
    Anillin, one of the first factors recruited to the cleavage site during cytokinesis, interacts with actin, myosin II and septins, and is essential for proper organization of the actomyosin contractile ring. We employed affinity-purification methodology coupled with mass spectrometry to identify Anillin-interacting molecules in Drosophila cells. We isolated several actin and myosin proteins, three of the five Drosophila septins and RacGAP50C (Tum), a component of the centralspindlin complex. Using drug and RNA interference (RNAi) treatments we established that F-actin is essential for Anillin cortical localization in prometaphase but not for its accumulation at the cleavage furrow after anaphase onset. Moreover, septins were not recruited to the cleavage site in cells in which Anillin was knocked down by RNAi, but localized to central-spindle microtubules, suggesting that septins travel along microtubules to interact with Anillin at the furrow. Finally, we demonstrate that RacGAP50C is necessary for Anillin accumulation at the furrow and that the two proteins colocalize in vivo and interact in vitro. Thus, in addition to its role in activating RhoA signalling, RacGAP50C also controls the proper assembly of the actomyosin ring by interacting with Anillin at the cleavage furrow

    Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster.

    Get PDF
    BACKGROUND: Kinetochores are large multiprotein complexes indispensable for proper chromosome segregation. Although Drosophila is a classical model organism for studies of chromosome segregation, little is known about the organization of its kinetochores. METHODOLOGY/PRINCIPAL FINDINGS: We employed bioinformatics, proteomics and cell biology methods to identify and analyze the interaction network of Drosophila kinetochore proteins. We have shown that three Drosophila proteins highly diverged from human and yeast Ndc80, Nuf2 and Mis12 are indeed their orthologues. Affinity purification of these proteins from cultured Drosophila cells identified a further five interacting proteins with weak similarity to subunits of the SPC105/KNL-1, MIND/MIS12 and NDC80 kinetochore complexes together with known kinetochore associated proteins such as dynein/dynactin, spindle assembly checkpoint components and heterochromatin proteins. All eight kinetochore complex proteins were present at the kinetochore during mitosis and MIND/MIS12 complex proteins were also centromeric during interphase. Their down-regulation led to dramatic defects in chromosome congression/segregation frequently accompanied by mitotic spindle elongation. The systematic depletion of each individual protein allowed us to establish dependency relationships for their recruitment onto the kinetochore. This revealed the sequential recruitment of individual members of first, the MIND/MIS12 and then, NDC80 complex. CONCLUSIONS/SIGNIFICANCE: The Drosophila MIND/MIS12 and NDC80 complexes and the Spc105 protein, like their counterparts from other eukaryotic species, are essential for chromosome congression and segregation, but are highly diverged in sequence. Hierarchical dependence relationships of individual proteins regulate the assembly of Drosophila kinetochore complexes in a manner similar, but not identical, to other organisms

    A software framework for analysing solid-state MAS NMR data

    Get PDF
    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data

    Citrullination of HP1γ chromodomain affects association with chromatin.

    Get PDF
    BACKGROUND: Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance. RESULTS: We find that HP1γ is citrullinated in mouse embryonic stem cells (mESCs) and this diminishes when cells differentiate, indicating that it is a dynamically regulated post-translational modification during stem cell differentiation. Peptidylarginine deiminase 4, a known regulator of pluripotency, citrullinates HP1γ in vitro. This requires R38 and R39 within the HP1γ chromodomain, and the catalytic activity is enhanced by trimethylated H3K9 (H3K9me3) peptides. Mutation of R38 and R39, designed to mimic citrullination, affects HP1γ binding to H3K9me3-containing peptides. Using live-cell single-particle tracking, we demonstrate that R38 and R39 are important for HP1γ binding to chromatin in vivo. Furthermore, their mutation reduces the residence time of HP1γ on chromatin in differentiating mESCs. CONCLUSION: Citrullination is a novel post-translational modification of the structural heterochromatin protein HP1γ in mESCs that is dynamically regulated during mESC differentiation. The citrullinated residues lie within the HP1γ chromodomain and are important for H3K9me3 binding in vitro and chromatin association in vivo.Cancer Research UK (grant reference RG17001) Wellcome Trust (Core Grant reference WT203144) Cancer Research UK (grant reference C6946/A24843). Wellcome Trust (206291/Z/17/Z) Medical Research Council (MR/P019471/1 and MR/M010082/1). Royal Society Professorship (RP150066) Medical Research Council (MR/K015850/1

    The pentameric nucleoplasmin fold is present in Drosophila FKBP39 and a large number of chromatin-related proteins.

    Get PDF
    Nucleoplasmin is a histone chaperone that consists of a pentameric N-terminal domain and an unstructured C-terminal tail. The pentameric core domain, a doughnut-like structure with a central pore, is only found in the nucleoplasmin family. Here, we report the first structure of a nucleoplasmin-like domain (NPL) from the unrelated Drosophila protein, FKBP39, and we present evidence that this protein associates with chromatin. Furthermore, we show that two other chromatin proteins, Arabidopsis thaliana histone deacetylase type 2 (HD2) and Saccharomyces cerevisiae Fpr4, share the NPL fold and form pentamers, or a dimer of pentamers in the case of HD2. Thus, we propose a new family of proteins that share the pentameric nucleoplasmin-like NPL domain and are found in protists, fungi, plants and animals.We are grateful to Gunter Stier for providing the vector; Michael Nilges, Oleg Fedorov, Benjamin Bardiaux, Stefanie Hartmann and Wolfgang Rieping for helpful discussions; and Daniel Nietlispach for NMR expertise. We thank Renato Paro for generously providing us with an anti-FKBP39 antibody. We would like to thank the Wellcome Trust for financial support (grant 082010/Z/07/Z). V.T.F. and E.D.L. acknowledge support from Engineering and Physical Sciences Research Council under grants GR/R99393/01 and EP/C015452/1 for the creation of the Deuteration Laboratory platform operating within the Grenoble Partnership for Structural Biology. V.T.F. also acknowledges support from the European Union under contract RII3-CT-2003-505925. J.B.A. acknowledges the provision of a postdoctoral fellowship held at Keele University. M.R.P. and D.M.G. were supported by the Medical Research Council and Cancer Research UK grants to D.M.G. A.A.W. is a recipient of a Wellcome Trust Fellowship092441/Z/10/Z. J.D. and M.D. were supported by the Harmonia 5 Grant 2013/10/M/NZ2/00298 from the Polish National Science Center. The authors would like to thank the Institut Laue-Langevin (ILL), the European Synchrotron Radiation Facility (ESRF) and the European Molecular Biology Laboratory Hamburg outstation (EMBL-HH) for the provision of beamtime and access to the experimental facilities of D22, ID14eh3 and X33 respectively. We would also like to thank the local contacts at all the facilities for providing assistance in using the beam lines.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jmb.2015.03.01
    • …
    corecore