36 research outputs found

    Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms

    Get PDF
    INTRODUCTION: Most conventional drug delivery systems are not acceptable for pediatric patients as they differ in their developmental status and dosing requirements from other subsets of the population. Technology platforms are required to aid the development of age-appropriate medicines to maximize patient acceptability while maintaining safety, efficacy, accessibility and affordability. AREAS COVERED: The current approaches and novel developments in the field of age-appropriate drug delivery for pediatric patients are critically discussed including patient-centric formulations, administration devices and packaging systems. EXPERT OPINION: Despite the incentives provided by recent regulatory modifications and the efforts of formulation scientists, there is still a need for implementation of pharmaceutical technologies that enable the manufacture of licensed age-appropriate formulations. Harmonization of endeavors from regulators, industry and academia by sharing learning associated with data obtained from pediatric investigation plans, product development pathways and scientific projects would be the way forward to speed up bench-to-market age appropriate formulation development. A collaborative approach will benefit not only pediatrics, but other patient populations such as geriatrics would also benefit from an accelerated patient-centric approach to drug delivery

    'Big Data' informed drug development: a case for acceptability

    Get PDF
    Data, which help inform various stages of drug product development, are increasingly being collected using newer, more novel platforms, such as mobile applications, and analysed computationally as much larger 'Big Data' data sets, revealing patterns relating to human behaviour and interactions. Medicine acceptability gauges the ability and willingness of patients to take their dosage forms. It has become a crucial human component of drug product design. Vouching for the age appropriateness of medicinal products, acceptability related data are now expected by regulatory bodies. Shifting from traditional paper-based to electronic data-gathering platforms will allow the pharmaceutical industry to collect real-world, real-time, clinically relevant data, capable of informing current and future drug product development, reducing time and cost, and setting foundations for patient-centric drug product design

    Patient centric formulations for paediatrics and geriatrics: Similarities and differences

    Get PDF
    Paediatrics and geriatrics both represent highly heterogenous populations and require special consideration when developing appropriate dosage forms. This paper discusses similarities, differences and considerations with respect to the development of appropriate medicine formulations for paediatrics and geriatrics. Arguably the most significant compliance challenge in older people is polypharmacy, whereas for children the largest barrier is taste. Pharmaceutical technology has progressed rapidly and technologies including FDCs, multi-particulates and orodispersible dosage forms provide unprecedented opportunities to develop novel and appropriate formulations for both old and new drugs. However, it is important for the formulation scientists to work closely with patients, carers and clinicians to develop such formulations for both the paediatric and geriatric population

    Digital twin equipment in the mass supply system

    Get PDF
    The classification of digital twins and their application for the equipment of the mass supply system of a paper machine is considered.Рассмотрена классификация цифровых двойников и применение их для оборудования массоподводящей системы бумагоделательной машины

    European Paediatric Formulation Initiative (EuPFI)-Formulating Ideas for Better Medicines for Children.

    Get PDF
    © American Association of Pharmaceutical Scientists 2016, published by Springer US, available online at doi: https://doi.org/10.1208/s12249-016-0584-1The European Paediatric Formulation Initiative (EuPFI), founded in 2007, aims to promote and facilitate the preparation of better and safe medicines for children through linking research and information dissemination. It brings together the capabilities of the industry, academics, hospitals, and regulators within a common platform in order to scope the solid understanding of the major issues, which will underpin the progress towards the future of paediatric medicines we want.The EuPFI was formed in parallel to the adoption of regulations within the EU and USA and has served as a community that drives research and dissemination through publications and the organisation of annual conferences. The membership and reach of this group have grown since its inception in 2007 and continue to develop and evolve to meet the continuing needs and ambitions of research into and development of age appropriate medicines. Five diverse workstreams (age-appropriate medicines, Biopharmaceutics, Administration Devices, Excipients and Taste Assessment & Taste Masking (TATM)) direct specific workpackages on behalf of the EuPFI. Furthermore, EuPFI interacts with multiple diverse professional groups across the globe to ensure efficient working in the area of paediatric medicines. Strong commitment and active involvement of all EuPFI stakeholders have proved to be vital to effectively address knowledge gaps related to paediatric medicines, discuss potential areas for further research and identify issues that need more attention and analysis in the future.Peer reviewedFinal Accepted Versio

    The role of population PK-PD modelling in paediatric clinical research

    Get PDF
    Children differ from adults in their response to drugs. While this may be the result of changes in dose exposure (pharmacokinetics [PK]) and/or exposure response (pharmacodynamics [PD]) relationships, the magnitude of these changes may not be solely reflected by differences in body weight. As a consequence, dosing recommendations empirically derived from adults dosing regimens using linear extrapolations based on body weight, can result in therapeutic failure, occurrence of adverse effect or even fatalities. In order to define rational, patient-tailored dosing schemes, population PK-PD studies in children are needed. For the analysis of the data, population modelling using non-linear mixed effect modelling is the preferred tool since this approach allows for the analysis of sparse and unbalanced datasets. Additionally, it permits the exploration of the influence of different covariates such as body weight and age to explain the variability in drug response. Finally, using this approach, these PK-PD studies can be designed in the most efficient manner in order to obtain the maximum information on the PK-PD parameters with the highest precision. Once a population PK-PD model is developed, internal and external validations should be performed. If the model performs well in these validation procedures, model simulations can be used to define a dosing regimen, which in turn needs to be tested and challenged in a prospective clinical trial. This methodology will improve the efficacy/safety balance of dosing guidelines, which will be of benefit to the individual child
    corecore