22 research outputs found

    CUBES: a UV spectrograph for the future

    Get PDF
    In spite of the advent of extremely large telescopes in the UV/optical/NIR range, the current generation of 8-10m facilities is likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000, although a lower-resolution, sky-limited mode of R ~ 7,000 is also planned. CUBES will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the Phase B dedicated to detailed design and construction. First science operations are planned for 2028. In this paper, we briefly describe the CUBES project development and goals, the main science cases, the instrument design and the project organization and management

    Qualidade dos grãos de soja armazenados em diferentes condições

    No full text
    Objetivou-se, com este estudo, avaliar a qualidade dos grãos de soja armazenados em diferentes condições. Grãos de soja foram colhidos com aproximadamente 18,0% b.u. de teor de água e secados até 11,2, 12,8 e 14,8% b.u. Para que os teores de água fossem mantidos, a soja foi armazenada nas seguintes condições de temperatura e umidade relativa para 11,2%: 20 ºC e 61,7%; 30 ºC e 67,9%; 40 ºC e 69,4%; para 12,8%: 20 ºC e 73,7%; 30 ºC e 76,7%; 40 ºC e 80,8%; e para 14,8%: 20 ºC e 82,7%; 30 ºC e 83,9%; 40 ºC e 85,3%. A cada 45 dias até 180 dias de armazenamento, foram determinados teor de água, classificação dos grãos, massa específica aparente, coloração e teor de lipídios. Em geral, os grãos deterioraram ao longo do armazenamento e a perda de qualidade foi mais acentuada nos grãos armazenados com 12,8 e 14,8% a 40 ºC. Os grãos armazenados com 14,8% a 30 e 40 ºC, foram classificados como fora do padrão para comercialização após 135 e 90 dias, respectivamente. A combinação de teores de água e temperaturas mais elevados intensifica o processo de deterioração qualitativa dos grãos de soja armazenados

    Ozone saturation and decomposition kinetics in porous medium containing different hybrids of maize

    No full text
    ABSTRACT The objective of this study was to evaluate ozone saturation and decomposition kinetics in porous medium containing grains of different hybrids of maize. The following hybrids were used: common maize hybrid AG 1051, super sweet maize hybrids Tropical Plus, GSS 42072, GSS 41499 and GSS 41243. 1 kg grain samples with water contents of 13.0% (w.b.) were placed in glass containers with 3.25 L capacity. The grains were ozonized at the concentration of 1.28 mg L-1, at 25 ºC, with gas flow rate of 5.0 L min-1. Saturation time and concentration, half-life time and physical properties such as apparent specific weight, actual specific weight, porosity, sphericity and circularity of each maize hybrid were determined. The experiments were conducted in a completely randomized design with three replicates, using regression analysis of the data. Ozone saturation times remained between 6.6 and 163.9 min, with saturation concentration varying from 0.34 to 1.12 mg L-1. As for the ozone half-life time, the highest value was 10.5 min for the common maize hybrid AG 1051 and the lowest value was 0.14 min for the super sweet maize hybrid GSS 41499. It was concluded that ozone saturation and decomposition kinetics in maize depends on the hybrid contained in the porous medium. Ozone decomposition is faster in porous medium containing super sweet maize hybrids compared with the common maize hybrid

    Armazenamento de soja em silos tipo bolsa

    No full text
    Avaliaram-se as principais alterações qualitativas de soja armazenada em silos tipo bolsa e do óleo bruto extraído de soja com teores de água de 17,4% e 13,3%, armazenada em dois silos tipo bolsa, por 180 dias. Realizaram-se amostragens no dia do enchimento das bolsas, aos 30; 90 e 180 dias de armazenamento. Analisaram-se o teor de água, a condutividade elétrica, o percentual de germinação, a massa específica aparente da soja, além do teor de ácidos graxos livres e o índice de peróxido do óleo bruto extraído dela. Os teores de água da soja armazenada úmida e seca mantiveram-se próximos dos valores obtidos no início do período de armazenamento. Observou-se tendência de elevação da condutividade elétrica e decréscimo do percentual de germinação somente na soja úmida, principalmente após 90 dias de armazenamento. Não foi verificado decréscimo da massa específica aparente do material armazenado úmido e seco. Com relação aos parâmetros qualitativos do óleo bruto, observou-se que os valores obtidos se mantiveram abaixo do limite máximo exigido pela legislação para a comercialização de óleo bruto de soja. Pode-se concluir que os silos tipo bolsa representam alternativa viável do ponto de vista qualitativo para armazenagem de soja, e esse tipo de estrutura não ocasiona alterações qualitativas significativas no óleo bruto obtido desse material, em condições similares àquelas deste estudo

    Ozone saturation and decomposition kinetics in porous medium containing different hybrids of maize

    No full text
    <div><p>ABSTRACT The objective of this study was to evaluate ozone saturation and decomposition kinetics in porous medium containing grains of different hybrids of maize. The following hybrids were used: common maize hybrid AG 1051, super sweet maize hybrids Tropical Plus, GSS 42072, GSS 41499 and GSS 41243. 1 kg grain samples with water contents of 13.0% (w.b.) were placed in glass containers with 3.25 L capacity. The grains were ozonized at the concentration of 1.28 mg L-1, at 25 ºC, with gas flow rate of 5.0 L min-1. Saturation time and concentration, half-life time and physical properties such as apparent specific weight, actual specific weight, porosity, sphericity and circularity of each maize hybrid were determined. The experiments were conducted in a completely randomized design with three replicates, using regression analysis of the data. Ozone saturation times remained between 6.6 and 163.9 min, with saturation concentration varying from 0.34 to 1.12 mg L-1. As for the ozone half-life time, the highest value was 10.5 min for the common maize hybrid AG 1051 and the lowest value was 0.14 min for the super sweet maize hybrid GSS 41499. It was concluded that ozone saturation and decomposition kinetics in maize depends on the hybrid contained in the porous medium. Ozone decomposition is faster in porous medium containing super sweet maize hybrids compared with the common maize hybrid.</p></div

    Physiological and sanitary quality of maize seeds preconditioned in ozonated water

    No full text
    ABSTRACT The technique of controlled hydration of seeds has been used as a method of physiological conditioning to improve their performance in the field. Solution aeration with ozone gas is a promising option in controlling phytopathogens. The objective of the present study was to evaluate the physiological and sanitary quality of maize seeds preconditioned in ozonated water. In the evaluation of the physiological and sanitary quality, maize seeds were submitted to four concentrations of ozone gas (0, 10, 20 and 30 mg L-1) for five soaking periods (0, 30, 60, 90 and 120 min), with four replicates. Preconditioning maize seeds in ozonated water, followed by natural drying, resulted in a more pronounced initial development of seedlings, measured by means of the emergence speed index, seedling dry matter, seedling length and radicle length, compared with untreated seeds. The initial development of maize seedlings was intensified by the exposure of seeds to water, especially at 0 and 30 mg L-1 ozone concentrations during the period from 60 to 90 min. Preconditioning maize seeds in ozonated water did not affect the control of Fusarium sp. The fungicide Carbendazim + Thiram resulted in 100% control of Fusarium sp. in the seeds

    Physiological and sanitary quality of maize seeds preconditioned in ozonated water

    No full text
    <div><p>ABSTRACT The technique of controlled hydration of seeds has been used as a method of physiological conditioning to improve their performance in the field. Solution aeration with ozone gas is a promising option in controlling phytopathogens. The objective of the present study was to evaluate the physiological and sanitary quality of maize seeds preconditioned in ozonated water. In the evaluation of the physiological and sanitary quality, maize seeds were submitted to four concentrations of ozone gas (0, 10, 20 and 30 mg L-1) for five soaking periods (0, 30, 60, 90 and 120 min), with four replicates. Preconditioning maize seeds in ozonated water, followed by natural drying, resulted in a more pronounced initial development of seedlings, measured by means of the emergence speed index, seedling dry matter, seedling length and radicle length, compared with untreated seeds. The initial development of maize seedlings was intensified by the exposure of seeds to water, especially at 0 and 30 mg L-1 ozone concentrations during the period from 60 to 90 min. Preconditioning maize seeds in ozonated water did not affect the control of Fusarium sp. The fungicide Carbendazim + Thiram resulted in 100% control of Fusarium sp. in the seeds.</p></div
    corecore