30 research outputs found

    The Cellular Prion Protein Interacts with the Tissue Non-Specific Alkaline Phosphatase in Membrane Microdomains of Bioaminergic Neuronal Cells

    Get PDF
    BACKGROUND: The cellular prion protein, PrP(C), is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C) in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C) acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C), we have described a neuronal specificity pointing to a role of PrP(C) in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT)) or noradrenergic (1C11(NE)) derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C) signaling prompted us to search for PrP(C) partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C) with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP). This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT) and 1C11(NE) cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT) and 1C11(NE) bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C) partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C) and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C)-laminin interplay. The partnership between TNAP and PrP(C) in neuronal cells may provide new clues as to the neurospecificity of PrP(C) function

    Revisiting the genetic diversity of emerging hantaviruses circulating in Europe using a pan-viral resequencing microarray

    Get PDF
    Hantaviruses are zoonotic agents transmitted from small mammals, mainly rodents, to humans, where they provoke diseases such as Hemorrhagic fever with Renal Syndrome (HFRS) and its mild form, Nephropathia Epidemica (NE), or Hantavirus Cardio-Pulmonary Syndrome (HCPS). Hantaviruses are spread worldwide and monitoring animal reservoirs is of primary importance to control the zoonotic risk. Here, we describe the development of a pan-viral resequencing microarray (PathogeniD v3.0) able to explore the genetic diversity of rodent-borne hantaviruses endemic in Europe. Among about 800 sequences tiled on the microarray, 52 correspond to a tight molecular sieve of hantavirus probes covering a large genetic landscape. RNAs from infected animal tissues or from laboratory strains have been reverse transcribed, amplified, then hybridized to the microarray. A classical BLASTN analysis applied to the sequence delivered through the microarray allows to identify the hantavirus species up to the exact geographical variant present in the tested samples. Geographical variants of the most common European hantaviruses from France, Germany, Slovenia and Finland, such as Puumala virus, Dobrava virus and Tula virus, were genetically discriminated. Furthermore, we precisely characterized geographical variants still unknown when the chip was conceived, such as Seoul virus isolates, recently emerged in France and the United Kingdom

    Lysine 271 in the transmembrane domain of the T-cell antigen receptor beta chain is necessary for its assembly with the CD3 complex but not for alpha/beta dimerization.

    No full text
    The T-cell antigen receptor (TcR) complex present on most T-cells is formed by a clone-specific disulfide-linked alpha/beta heterodimer noncovalently associated to the CD3 complex, the latter composed of five invariant polypeptides: gamma, delta, epsilon, zeta/zeta, or zeta/eta. The presence of conserved, oppositely charged, amino acids in the predicted transmembrane domains of all the subunits of the TcR.CD3 complex suggests that these residues may have a critical function in the assembly and/or stabilization of the complex. In order to analyze the role of the transmembrane-charged amino acids in the association and cell surface expression of the TcR.CD3 complex, we have carried out site-directed mutagenesis of Lys271 in the transmembrane domain of the TcR beta chain and analyzed the capacity of the altered chain to assemble in a TcR beta-negative T-cell line. Here we show that substitution of this positively charged residue by alanine or glutamine does not prevent cytoplasmic association of alpha and beta chains to form disulfide-linked heterodimers, but does abolish formation of an alpha/beta.CD3 complex and, consequently, its expression on the cell surface

    Analysis of tetanus toxin peptide/DR recognition by human T cell receptors reconstituted into a murine T cell hybridoma.

    No full text
    We have previously reported that human T cell receptors (TcR) selected in the class II-restricted (HLA-DRB1*1302) response to a tetanus toxin peptide (tt830-843) frequently used the V beta 2 germ-line segment which paired with several V alpha segments and that the putative CDR3 of both alpha and beta chains showed remarkable heterogeneity. To analyze the structural basis for recognition of the tt830-843/DR complex, five of these TcR were reconstituted into a murine T cell hybridoma, 58 alpha- beta-, by expressing the human alpha and beta variable regions joined to the mouse alpha and beta constant regions, respectively. The chimeric TcR, expressing the same V beta germ-line segment (V beta 2), two expressing V alpha 21.1, two V alpha 17.1 and one V alpha 8.1 were shown to have the expected antigen specificity and DR restriction. Two lines of evidence suggested that the putative CDR3, although not conserved in these TcR, played a key role in recognition. First, two TcR with identical V germ-line segments but distinct CDR3 showed large difference in their capacity to react with the ligand. Second, interchanging the alpha and beta chains from tt830-843/DR1302-specific TcR which differed in their CDR3 sequences invariably led to loss of recognition. We also asked whether germ-line V alpha 17.1 could functionally replace V alpha 21.1, as they appear to be related in their primary sequence. However, as in the case of CDR3 exchanges, V alpha replacement abrogated TcR reactivity. Taken together, these data underline the fine interdependence of the structural components of the TcR binding site in defining a given specificity. Four of the TcR studied displaying promiscuous recognition were also tested against different DR alleles and site-directed mutants. The results of these experiments suggested that, in spite of their structural heterogeneity, anti-tt830-843 TcR may have a similar orientation with respect to the peptide/DR complex. The reconstitution system described herein should represent a valuable tool for detailed studies of human TcR specificity

    Truncated N-glycans affect protein folding in the ER of CHO-derived mutant cell lines without preventing calnexin binding

    No full text
    The involvement of N-glycans in the folding of influenza virus hemagglutinin (HA) was analyzed in two CHO-derived glycosylation mutants exhibiting a thermosensitive defect for secretion of human placental alkaline phosphatase. Truncated Man5GlcNAc2 oligosaccharides with one or three glucose residues are attached to proteins of the MadIA214 and B3F7AP2-1 mutant cells, respectively. Newly synthesized proteins retained in these cells carry a Man4 trimmed glycan generated by a mannosidase different from the ER mannosidases I and II and suggesting a recycling through the Golgi complex. The glucosidase inhibitor castanospermine affects the binding of HA folding intermediates to the lectin-like chaperone calnexin in B3F7AP2-1 but not in MadIA214 cells. We demonstrated that calnexin interacts in vivo with truncated Man5 derivatives. In MadIA214 cells, this is only possible when Man5GlcNAc2 on protein becomes reglucosylated. The pattern of intermediates seen during the folding of HA in the MadIA214 and B3F7AP2-1 mutant cell lines is different than in control cells. We also observed a variable occupancy of the seven glycosylation-sites. However, even under conditions that restore glycosylation of all sites, the folding intermediates of HA in the mutant cells still remain heterogeneous. Our results demonstrate that addition of truncated N-glycans interferes extensively with the folding of newly synthesized proteins in vivo

    Preferential V beta gene usage and lack of junctional sequence conservation among human T cell receptors specific for a tetanus toxin-derived peptide: evidence for a dominant role of a germline-encoded V region in antigen/major histocompatibility complex recognition.

    No full text
    To investigate the structural and genetic basis of the T cell response to defined peptide/major histocompatibility (MHC) class II complexes in humans, we established a large panel of T cell clones (61) from donors of different HLA-DR haplotypes and reactive with a tetanus toxin-derived peptide (tt830-844) recognized in association with most DR molecules (universal peptide). By using a bacterial enterotoxin-based proliferation assay and cDNA sequencing, we found preferential use of a particular V beta region gene segment, V beta 2.1, in three of the individuals studied (64%, n = 58), irrespective of whether the peptide was presented by the DR6wcI, DR4w4, or DRw11.1 and DRw11.2 alleles, demonstrating that shared MHC class II antigens are not required for shared V beta gene use by T cell receptors (TCRs) specific for this peptide. V alpha gene use was more heterogeneous, with at least seven different V alpha segments derived from five distinct families encoding alpha chains able to pair with V beta 2.1 chains to form a tt830-844/DR-specific binding site. Several cases were found of clones restricted to different DR alleles that expressed identical V beta and (or very closely related) V alpha gene segments and that differed only in their junctional sequences. Thus, changes in the putative complementary determining region 3 (CDR3) of the TCR may, in certain cases, alter MHC specificity and maintain peptide reactivity. Finally, in contrast to what has been observed in other defined peptide/MHC systems, a striking heterogeneity was found in the junctional regions of both alpha and beta chains, even for TCRs with identical V alpha and/or V beta gene segments and the same restriction. Among 14 anti-tt830-844 clones using the V beta 2.1 gene segment, 14 unique V beta-D-J beta junctions were found, with no evident conservation in length and/or amino acid composition. One interpretation for this apparent lack of coselection of specific junctional sequences in the context of a common V element, V beta 2.1, is that this V region plays a dominant role in the recognition of the tt830-844/DR complex

    Discovery of hantavirus circulating among Rattus rattus in French Mayotte island, Indian Ocean.

    No full text
    International audienceHantaviruses are emerging zoonotic viruses that cause human diseases. In this study, sera from 642 mammals from La Réunion and Mayotte islands (Indian Ocean) were screened for the presence of hantaviruses by molecular analysis. None of the mammals from La Réunion island was positive, but hantavirus genomic RNA was discovered in 29/160 (18 %) Rattus rattus from Mayotte island. The nucleoprotein coding region was sequenced from the liver and spleen of all positive individuals allowing epidemiological and intra-strain variability analyses. Phylogenetic analysis based on complete coding genomic sequences showed that this Murinae-associated hantavirus is a new variant of Thailand virus. Further studies are needed to investigate hantaviruses in rodent hosts and in Haemorrhagic Fever with Renal Syndrome (HFRS) human cases
    corecore