1,592 research outputs found

    Near-Field UHF RFID Transponder with a Screen-Printed Graphene Antenna

    Full text link
    As a method of producing RFID tags, printed graphene provides a low-cost and eco-friendly alternative to the etching of aluminum or copper. The high resistivity of graphene, however, sets a challenge for the antenna design. In practice, it has led to using very large antennas in the UHF RFID far field tags demonstrated before. Using inductive near field as the coupling method between the reader and the tag is an alternative to the radiating far field also at UHF. The read range of such a near field tag is very short, but, on the other hand, the tag is extremely simple and small. In this paper, near field UHF RFID transponders with screen-printed graphene antennas are presented and the effect of the dimensions of the tag and the attachment method of the microchip studied. The attachment of the microchip is an important step of the fabrication process of a tag that has its impact on the final cost of a tag. Of the tags demonstrated, even the smallest one with the outer dimensions of 21 mm * 18 mm and the chip attached with isotropic conductive adhesive (ICA) was readable from a distance of 10 mm with an RF power marginal of 19 dB, which demonstrates that an operational and small graphene-based UHF RFID tag can be fabricated with low-cost industrial processes.Comment: 8 pages, 9 figures. IEEE Transactions on Components, Packaging and Manufacturing Technology, 201

    Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in noble-gas-filled hollow-core photonic crystal fiber

    Full text link
    We report on the generation of a three-octave-wide supercontinuum extending from the vacuum ultraviolet (VUV) to the near-infrared, spanning at least 113 to 1000 nm (i.e., 11 to 1.2 eV), in He-filled hollow-core kagome-style photonic crystal fiber. Numerical simulations confirm that the main mechanism is a novel and previously undiscovered interaction between dispersive-wave emission and plasma-induced blueshifted soliton recompression around the fiber zero dispersion frequency. The VUV part of the supercontinuum, which modeling shows to be coherent and possess a simple phase structure, has sufficient bandwidth to support single-cycle pulses of 500 attosecond duration. We also demonstrate, in the same system, the generation of narrower-band VUV pulses, through dispersive-wave emission, tunable from 120 to 200 nm with efficiencies exceeding 1% and VUV pulse energies in excess of 50 nJ.Comment: 7 pages, 5 figure

    Filling Gaps in Earthworm Digital Diversity in Northern Eurasia from Russian-language Literature

    Get PDF
    Data availability for certain groups of organisms (ecosystem engineers, invasive or protected species, etc.) is important for monitoring and making predictions in changing environments. One of the most promising directions for research on the impact of changes is species distribution modelling. Such technologies are highly dependent on occurrence data of high quality (Van Eupen et al. 2021). Earthworms (order Crassiclitellata) are a key group of organisms (Lavelle 2014), but their distribution around the globe is underrepresented in digital resources. Dozens of earthworm species, both widespread and endemic, inhabit the territory of Northern Eurasia (Perel 1979), but extremely poor data on them is available through global biodiversity repositories (Cameron 2018). There are two main obstacles to data mobilisation. Firstly, studies of the diversity of earthworms in Northen Eurasia have a long history (since the end of the nineteenth century) and were conducted by several generations of Soviet and Russian researchers. Most of the collected data have been published in "grey literature", now stored only in a few libraries. Until recently, most of these remained largely undigitised, and some are probably irretrievably lost. The second problem is the difference in the taxonomic checklists used by Soviet and European researchers. Not all species and synonyms are included in the GBIF (Global Biodiversity Information Facility) Backbone Taxonomy. As a result, existing earthworm species distribution models (Phillips 2019) potentially miss a significant amount of data and may underestimate biodiversity, and predict distributions inaccurately. To fill this gap, we collected occurrence data from the Russian language literature (published by Soviet and Russian researchers) and digitised species checklists, keeping the original scientific names.To find relevant literature, we conducted a keyword search for "earthworms" and "Lumbricidae" through the Russian national scientific online library eLibrary and screened reference lists from the monographs of leading Soviet and Russian soil zoologist Tamara Perel (Vsevolodova-Perel 1997, Perel 1979). As a result, about 1,000 references were collected, of which 330 papers had titles indicating the potential to contain data on earthworm occurrences. Among these, 219 were found as PDF files or printed papers. For dataset compilation, 159 papers were used; the others had no exact location data or duplicated data contained in other papers. Most of the sources were peer-reviewed articles (Table 1). A reference list is available through Zenodo (Ivanova et al. 2023).The earliest publication we could find dates back to 1899, by Wilhelm Michaelsen. The most recent publication is 2023. About a third of the sources were written by systematists Iosif Malevich and Tamara Perel. Occurrence data were extracted and structured according to the Darwin Core standard (Wieczorek et al. 2012). During the data digitisation process, we tried to include as much primary information as possible. Only one tenth of the literature occurrences contained the geographic coordinates of locations provided by the authors. The remaining occurrences were manually georeferenced using the point-radius method (Wieczorek et al. 2010).The resulting occurrence dataset Earthworm occurrences from Russian-language literature (Shashkov et al. 2023) was published through the Global Biodiversity Information Facility portal. It contains 5304 occurrences of 117 species from 27 countries (Fig. 1).To improve the GBIF Backbone Taxonomy, we digitised two catalogues of earthworm species published for the USSR (Perel 1979) and Russian Federation (Vsevolodova-Perel 1997) by Tamara Perel. Based on these monographs, three checklist datasets were published through GBIF (Shashkov 2023b, 124 records; Shashkov 2023c, 87 records; Shashkov 2023a, 95 records). Now we work towards including these names in the GBIF Backbone so that all species names can be matched and recorded exactly as mentioned in papers published by Soviet and Russian researchers

    Bose-Einstein Condensation of Pions in High Multiplicity Events

    Get PDF
    We present microcanonical ensemble calculations of particle number fluctuations in the ideal pion gas approaching Bose-Einstein condensation. In the samples of events with a fixed number of all pions, NÏ€N_{\pi}, one may observe a prominent signal. When NÏ€N_{\pi} increases the scaled variances for particle number fluctuations of both neutral and charged pions increase dramatically in the vicinity of the Bose-Einstein condensation line. As an example, the estimates are presented for p+pp+p collisions at the beam energy of 70 GeV.Comment: 4 pages, 2 figure

    Damage-free single-mode transmission of deep-UV light in hollow-core PCF

    Full text link
    Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV require stable, single-mode light delivery. Transmitting even ~2 mW CW light at 280 nm through silica solid-core fibers has previously been found to cause transmission degradation after just a few hours due to optical damage. We show that photonic crystal fiber of the kagom\'e type can be used for effectively single-mode transmission with acceptable loss and bending sensitivity. No transmission degradation was observed even after >100 hours of operation with 15 mW CW input power. In addition it is shown that implementation of the fiber in a trapped ion experiment significantly increases the coherence times of the internal state transfer due to an increase in beam pointing stability
    • …
    corecore