137 research outputs found

    Radiative pressure feedback by a quasar in a galactic bulge

    Get PDF
    We show that Eddington-limited black hole luminosities can be sufficient to deplete a galaxy bulge of gas through radiation pressure, when the ionization state of the gas and the presence of dust are properly taken into account. Once feedback starts to be effective it can consistently drive all the gas out of the whole galaxy. We estimate the amount by which the effect of radiation pressure on dusty gas boosts the mass involved in the Eddington limit and discuss the expected column density at which the gas is ejected. An example is shown of the predicted observed nuclear spectrum of the system at the end of an early, obscured phase of growth when the remaining column density NH ~ f * 1e24 cm^-2 where f is the gas fraction in the bulge.Comment: correct corrupted figures in pdf version, MNRAS accepted, 5 pages, 3 figure

    Inverse Compton X-rays from Giant Radio Galaxies at z~1

    Full text link
    We report XMM-Newton observations of three FR II radio galaxies at redshifts between 0.85 and 1.34, which show extended diffuse X-ray emission within the radio lobes, likely due to inverse-Compton up-scattering of the cosmic microwave background. Under this assumption, through spectrum-fitting together with archival VLA radio observations, we derive an independent estimate of the magnetic field in the radio lobes of 3C 469.1 and compare it with the equipartition value. We find concordance between these two estimates as long as the turnover in the energy distribution of the particles occurs at a Lorentz factor in excess of ~ 250. We determine the total energy in relativistic particles in the radio emitting lobes of all three sources to range between 3e59 and 8e59 erg. The nuclei of these X-ray sources are heavily-absorbed powerful AGN.Comment: 5 pages, 7 figures, 2 tables. Accepted for publication in MNRA

    The Compton-thick quasar at the heart of the high-redshift giant radio galaxy 6C 0905+39

    Full text link
    Our XMM-Newton spectrum of the giant, high-redshift (z=1.88) radio galaxy 6C 0905+39 shows that it contains one of the most powerful, high-redshift, Compton-thick quasars known. Its spectrum is very hard above 2 keV. The steep XMM spectrum below that energy is shown to be due to extended emission from the radio bridge using Chandra data. The nucleus of 6C 0905+39 has a column density of 3.5 (+1.4,-0.4) X 10^24 cm^-2 and absorption-corrected X-ray luminosity of 1.7 (+0.9,-0.1) X 10^45 erg/s in the 2-10 keV band. A lower redshift active galaxy in the same field, SDSS J090808.36+394313.6, may also be Compton-thick.Comment: 5 pages, 5 figures, accepted to MNRA

    The luminous X-ray hotspot in 4C 74.26: synchrotron or inverse-Compton emission?

    Full text link
    We report the discovery of an X-ray counterpart to the southern radio hotspot of the largest-known radio quasar 4C 74.26 (whose redshift is z=0.104). Both XMM-Newton and Chandra images reveal the same significant (10arcsec, i.e. 19kpc) offset between the X-ray hotspot and the radio hotspot imaged with MERLIN. The peak of the X-ray emission may be due to synchrotron or inverse-Compton emission. If synchrotron emission, the hotspot represents the site of particle acceleration and the offset arises from either the jet exhibiting Scheuer's `dentist's drill' effect or a fast spine having less momentum than the sheath surrounding it, which creates the radio hotspot. If the emission arises from the inverse-Compton process, it must be inverse-Compton scattering of the CMB in a decelerating relativistic flow, implying that the jet is relativistic (Gamma >= 2) out to a distance of at least 800kpc. Our analysis, including optical data from the Liverpool Telescope, rules out a background AGN for the X-ray emission and confirms its nature as a hotspot, making it the most X-ray luminous hotspot yet detected.Comment: 9 pages, 9 figures, definitive version published by MNRA

    The X-ray and radio-emitting plasma lobes of 4C23.56: further evidence of recurrent jet activity and high acceleration energies

    Full text link
    New Chandra observations of the giant (0.5 Mpc) radio galaxy 4C23.56 at z = 2.5 show X-rays in a linear structure aligned with its radio emission, but anti-correlated with the detailed radio structure. Consistent with the powerful, high-z giant radio galaxies we have studied previously, X-rays seem to be invariably found where the lobe plasma is oldest even where the radio emission has long since faded. The hotspot complexes seem to show structures resembling the double shock structure exhibited by the largest radio quasar 4C74.26, with the X-ray shock again being offset closer to the nucleus than the radio synchrotron shock. In the current paper, the offsets between these shocks are even larger at 35kpc. Unusually for a classical double (FRII) radio source, there is smooth low surface-brightness radio emission associated with the regions beyond the hotspots (further away from the nucleus than the hotspots themselves), which seems to be symmetric for the ends of both jets. We consider possible explanations for this phenomenon, and conclude that it arises from high-energy electrons, recently accelerated in the nearby radio hotspots that are leaking into a pre-existing weakly-magnetized plasma that are symmetric relic lobes fed from a previous episode of jet activity. This contrasts with other manifestations of previous epochs of jet ejection in various examples of classical double radio sources namely (1) double-double radio galaxies by e.g. Schoenmakers et al, (2) the double-double X-ray/radio galaxies by Laskar et al and (3) the presence of a relic X-ray counter-jet in the prototypical classical double radio galaxy, Cygnus A by Steenbrugge et al. The occurrence of multi-episodic jet activity in powerful radio galaxies and quasars indicates that they may have a longer lasting influence on the on-going structure formation processes in their environs than previously presumed.Comment: Accepted by MNRAS; 6 page

    The inverse-Compton X-ray-emitting lobes of the high-redshift giant radio galaxy 6C 0905+39

    Full text link
    We present new XMM-Newton data of the high-redshift (z=1.883), Mpc-sized giant radio galaxy 6C 0905+39. The larger collecting area and longer observation time for our new data means that we can better characterise the extended X-ray emission, in particular its spectrum, which arises from cosmic microwave background photons scattered into the X-ray band by the energetic electrons in the spent synchrotron plasma of the (largely) radio-quiet lobes of 6C 0905+39. We calculate the energy that its jet-ejected plasma has dumped into its surroundings in the last 3 X 10^7 years and discuss the impact that similar, or even more extreme, examples of spent, radio-quiet lobes would have on their surroundings. Interestingly, there is an indication that the emission from the hotspots is softer than the rest of the extended emission and the core, implying it is due to synchrotron emission. We confirm our previous detection of the low-energy turnover in the eastern hotspot of 6C 0905+39.Comment: 7 pages, 7 figures, accepted by MNRA

    Two types of shock in the hotspot of the giant quasar 4C74.26: a high-resolution comparison from Chandra, Gemini & MERLIN

    Full text link
    New Chandra observations have resolved the structure of the X-ray luminous southern hotspot in the giant radio quasar 4C74.26 into two distinct features. The nearer one to the nucleus is an extremely luminous peak, extended some 5 kpc perpendicular to the orientation of the jet; 19 kpc projected further away from the central nucleus than this is a fainter X-ray arc having similar symmetry. This arc is co-spatial with near-IR and optical emission imaged with Gemini, and radio emission imaged with MERLIN. The angular separation of the double shock structure (itself ~19 kpc or 10 arcsec in size) from the active nucleus which fuels them of ~550 kpc is a reminder of the challenge of connecting "unidentified" hard X-ray or Fermi sources with their origins.Comment: In press at MNRA

    The extended X-ray emission around HDF130 at z=1.99: an inverse Compton ghost of a giant radio source in the Chandra Deep Field North

    Full text link
    One of the six extended X-ray sources found in the Chandra DeepField North is centred on HDF130, which has recently been shown to be a massive galaxy at z=1.99 with a compact radio nucleus. The X-ray source has a roughly double-lobed structure with each lobe about 41 arcsec long, or 345 kpc at the redshift of HDF130. We have analyzed the 2 Ms X-ray image and spectrum of the source and find that it is well fit by a power-law continuum of photon index 2.65 and has a 2--10 keV luminosity of 5.4x10^{43}ergps (if at z=1.99). Any further extended emission within a radius of 60 arcsec has a luminosity less than half this value, which is contrary to what is expected from a cluster of galaxies. The source is best explained as an inverse Compton ghost of a giant radio source, which is no longer being powered, and for which Compton losses have downgraded the energetic electrons, \gamma> 10^4, required for high-frequency radio emission. The lower energy electrons, \gamma~1000, produce X-rays by inverse Compton scattering on the Cosmic Microwave Background. Depending on the magnetic field strength, some low frequency radio emission may remain. Further inverse Compton ghosts may exist in the Chandra deep fields.Comment: 4 pages, 2 figures, accepted for publication in MNRA

    The inverse-Compton ghost HDF 130 and the giant radio galaxy 6C 0905+3955: matching an analytic model for double radio source evolution

    Full text link
    We present new GMRT observations of HDF 130, an inverse-Compton (IC) ghost of a giant radio source that is no longer being powered by jets. We compare the properties of HDF 130 with the new and important constraint of the upper limit of the radio flux density at 240 MHz to an analytic model. We learn what values of physical parameters in the model for the dynamics and evolution of the radio luminosity and X-ray luminosity (due to IC scattering of the cosmic microwave background (CMB)) of a Fanaroff-Riley II (FR II) source are able to describe a source with features (lobe length, axial ratio, X-ray luminosity, photon index and upper limit of radio luminosity) similar to the observations. HDF 130 is found to agree with the interpretation that it is an IC ghost of a powerful double-lobed radio source, and we are observing it at least a few Myr after jet activity (which lasted 5--100 Myr) has ceased. The minimum Lorentz factor of injected particles into the lobes from the hotspot is preferred to be γ103\gamma\sim10^3 for the model to describe the observed quantities well, assuming that the magnetic energy density, electron energy density, and lobe pressure at time of injection into the lobe are linked by constant factors according to a minimum energy argument, so that the minimum Lorentz factor is constrained by the lobe pressure. We also apply the model to match the features of 6C 0905+3955, a classical double FR II galaxy thought to have a low-energy cutoff of γ104\gamma\sim10^4 in the hotspot due to a lack of hotspot inverse-Compton X-ray emission. The models suggest that the low-energy cutoff in the hotspots of 6C 0905+3955 is γ103\gamma\gtrsim 10^3, just slightly above the particles required for X-ray emission.Comment: 9 pages, 3 figure

    Discovery of the low-energy cutoff in a powerful giant radio galaxy

    Get PDF
    The lobes of radio galaxies and quasars, fed by jets and hotspots, represent a significant, and currently ill-constrained, source of energy input into the inter-galactic medium (IGM). How much energy is input into the IGM depends on the minimum energy to which the power-law distribution of relativistic particles is accelerated in the hotspots. This has hitherto been unknown to within three orders of magnitude. We present direct evidence for the discovery of this low-energy cutoff in the lobe of a Mpc-sized radio galaxy via the existence of extended X-ray emission, inverse-Compton scattered from aged radio plasma, and its separation by 80kpc from regions containing freshly accelerated plasma from the hotspot. The low-energy cutoff of gamma ~ 10^4 in the hotspot is higher than previously thought, but reconciles discrepancies with magnetic field estimates which had been systematically lower than equipartition values. The inverse Compton scattering of the spent synchrotron plasma is at the expense of cosmic microwave background (CMB) photons; we comment on the importance of such giant radio galaxies as contaminants of CMB anisotropies.Comment: Accepted by Ap J Letter
    corecore