12 research outputs found

    Functional Characterization of MigA and WapR: Putative Rhamnosyltransferases Involved in Outer Core Oligosaccharide Biosynthesis of Pseudomonas aeruginosaâ–ż

    No full text
    Pseudomonas aeruginosa lipopolysaccharide (LPS) contains two glycoforms of core oligosaccharide (OS); one form is capped with O antigen through an α-1,3-linked l-rhamnose (l-Rha), while the other is uncapped and contains an α-1,6-linked l-Rha. Two genes in strain PAO1, wapR (PA5000) and migA (PA0705), encode putative glycosyltransferases associated with core biosynthesis. We propose that WapR and MigA are the rhamnosyltransferases responsible for the two linkages of l-Rha to the core. Knockout mutants with mutations in both genes were generated. The wapR mutant produced LPS lacking O antigen, and addition of wapR in trans complemented this defect. The migA mutant produced LPS with a truncated outer core and showed no reactivity to outer core-specific monoclonal antibody (MAb) 5C101. Complementation of this mutant with migA restored reactivity of the LPS to MAb 5C101. Interestingly, LPS from the complemented migA strain was not reactive to MAb 18-19 (specific for the core-plus-one O repeat). This was due to overexpression of MigA in the complemented strain that caused an increase in the proportion of the uncapped core OS, thereby decreasing the amount of the core-plus-one O repeat, indicating that MigA has a regulatory role. The structures of LPS from both mutants were elucidated using nuclear magnetic resonance spectroscopy and mass spectrometry. The capped core of the wapR mutant was found to be truncated and lacked α-1,3-l-Rha. In contrast, uncapped core OS from the migA mutant lacked α-1,6-l-Rha. These results provide evidence that WapR is the α-1,3-rhamnosyltransferase, while MigA is the α-1,6-rhamnosyltransferase

    Chemical synthesis of UDP-Glc-2,3-diNAcA, a key intermediate in cell surface polysaccharide biosynthesis in the human respiratory pathogens B. pertussis and P. aeruginosa

    No full text
    In connection with studies on lipopolysaccharide biosynthesis in respiratory pathogens we had a need to access potential biosynthetic intermediate sugar nucleotides. Herein we report the chemical synthesis of uridine 5'-diphospho 2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronic acid (UDP-Glc-2,3-diNAcA) (1) from N-acetyl-D-glucosamine in 17 steps and similar to 9% overall yield. This compound has proved invaluable in the elucidation of biosynthetic pathways leading to the formation of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid-containing polysaccharides.</p
    corecore