205 research outputs found
Preclinical efficacy of hK2 targeted [177Lu]hu11B6 for prostate cancer theranostics
Androgen ablating drugs increase life expectancy in men with metastatic prostate cancer, but resistance inevitably develops. In a majority of these recurrent tumors, the androgen axis is reactivated in the form of increased androgen receptor (AR) expression. Targeting proteins that are expressed as a down-stream effect of AR activity is a promising rationale for management of this disease. The humanized IgG1 antibody hu11B6 internalizes into prostate and prostate cancer (PCa) cells by binding to the catalytic cleft of human kallikrein 2 (hK2), a prostate specific enzyme governed by the AR-pathway. In a previous study, hu11B6 conjugated with Actinium-225 (225Ac), a high linear energy transfer (LET) radionuclide, was shown to generate an AR-upregulation driven feed-forward mechanism that is believed to enhance therapeutic efficacy. We assessed the efficacy of hu11B6 labeled with a low LET beta-emitter, Lutetium-177 (177Lu) and investigated whether similar tumor killing and AR-enhancement is produced. Moreover, single-photon emission computed tomography (SPECT) imaging of 177Lu is quantitatively accurate and can be used to perform treatment planning. [177Lu]hu11B6 therefore has significant potential as a theranostic agent. Materials and Methods: Subcutaneous PCa xenografts (LNCaP s.c.) were grown in male mice. Biokinetics at 4-336 h post injection and uptake as a function of the amount of hu11B6 injected at 72 h were studied. Over a 30 to 120-day treatment period the therapeutic efficacy of different activities of [177Lu]hu11B6 were assessed by volumetric tumor measurements, blood cell counts, molecular analysis of the tumor as well as SPECT/CT imaging. Organ specific mean absorbed doses were calculated, using a MIRD-scheme, based on biokinetic data and rodent specific S-factors from a modified MOBY phantom. Tumor tissues of treated xenografts were immunohistochemically (IHC) stained for Ki-67 (proliferation) and AR, SA-β-gal activity (senescence) and analyzed by digital autoradiography (DAR). Results: Organ-to-blood and tumor-to-blood ratios were independent of hu11B6 specific activity except for the highest amount of antibody (150 µg). Tumor accumulation of [177Lu]hu11B6 peaked at 168 h with a specific uptake of 29 ± 9.1 percent injected activity per gram (%IA/g) and low accumulation in normal organs except in the submandibular gland (15 ± 4.5 %IA/g), attributed to a cross-reaction with mice kallikreins in this organ, was seen. However, SPECT imaging with therapeutic amounts of [177Lu]hu11B6 revealed no peak in tumor accumulation at 7 d, probably due to cellular retention of 177Lu and decreasing tumor volumes. For [177Lu]hu11B6 treated mice, tumor decrements of up to 4/5 of the initial tumor volume and reversible myelotoxicity with a nadir at 12 d were observed after a single injection. Tumor volume reduction correlated with injected activity and the absorbed dose. IHC revealed retained expression of AR throughout treatment and that Ki-67 staining reached a nadir at 9-14 d which coincided with high SA- β-gal activity (14 d). Quantification of nuclei staining showed that Ki-67 expression correlated negatively with activity uptake. AR expression levels in cells surviving therapy compared to previous timepoints and to controls at 30 d were significantly increased (p = 0.017). Conclusions: This study shows that hu11B6 labeled with the low LET beta-emitting radionuclide 177Lu can deliver therapeutic absorbed doses to prostate cancer xenografts with transient hematological side-effects. The tumor response correlated with the absorbed dose both on a macro and a small scale dosimetric level. Analysis of AR staining showed that AR protein levels increased late in the study suggesting a therapeutic mechanism, a feed forward mechanism coupled to AR driven response to DNA damage or clonal lineage selection, similar to that reported in high LET alpha-particle therapy using 225Ac labeled hu11B6, however emerging at a later timepoint
Options to Reform the European Union Legislation on GMOs: Scope and Definitions
We discuss options to reform the EU genetically modified organisms (GMO) regulatory framework, make risk assessment and decision-making more consistent with scientific principles, and lay the groundwork for international coherence. The first in a three-part series, this article focuses on reform options related to the scope of the legislation and the GMO definition
The Alcohol Flushing Response: An Unrecognized Risk Factor for Esophageal Cancer from Alcohol Consumption
Philip Brooks and colleagues discuss evidence linking the alcohol flushing response (predominantly due to ALDH2 deficiency) with a much higher risk of esophageal cancer from alcohol consumption
The overlap of genetic susceptibility to schizophrenia and cardiometabolic disease can be used to identify metabolically different groups of individuals
Understanding why individuals with severe mental illness (Schizophrenia, Bipolar Disorder and Major Depressive Disorder) have increased risk of cardiometabolic disease (including obesity, type 2 diabetes and cardiovascular disease), and identifying those at highest risk of cardiometabolic disease are important priority areas for researchers. For individuals with European ancestry we explored whether genetic variation could identify sub-groups with different metabolic profiles. Loci associated with schizophrenia, bipolar disorder and major depressive disorder from previous genome-wide association studies and loci that were also implicated in cardiometabolic processes and diseases were selected. In the IMPROVE study (a high cardiovascular risk sample) and UK Biobank (general population sample) multidimensional scaling was applied to genetic variants implicated in both psychiatric and cardiometabolic disorders. Visual inspection of the resulting plots used to identify distinct clusters. Differences between these clusters were assessed using chi-squared and Kruskall-Wallis tests. In IMPROVE, genetic loci associated with both schizophrenia and cardiometabolic disease (but not bipolar disorder or major depressive disorder) identified three groups of individuals with distinct metabolic profiles. This grouping was replicated within UK Biobank, with somewhat less distinction between metabolic profiles. This work focused on individuals of European ancestry and is unlikely</p
Recommended from our members
Quantum Simulators: Architectures and Opportunities
Quantum simulators are a promising technology on the spectrum of quantum devices from specialized quantum experiments to universal quantum computers. These quantum devices utilize entanglement and many-particle behavior to explore and solve hard scientific, engineering, and computational problems. Rapid development over the last two decades has produced more than 300 quantum simulators in operation worldwide using a wide variety of experimental platforms. Recent advances in several physical architectures promise a golden age of quantum simulators ranging from highly optimized special purpose simulators to flexible programmable devices. These developments have enabled a convergence of ideas drawn from fundamental physics, computer science, and device engineering. They have strong potential to address problems of societal importance, ranging from understanding vital chemical processes, to enabling the design of new materials with enhanced performance, to solving complex computational problems. It is the position of the community, as represented by participants of the National Science Foundation workshop on “Programmable Quantum Simulators,” that investment in a national quantum simulator program is a high priority in order to accelerate the progress in this field and to result in the first practical applications of quantum machines. Such a program should address two areas of emphasis: (1) support for creating quantum simulator prototypes usable by the broader scientific community, complementary to the present universal quantum computer effort in industry; and (2) support for fundamental research carried out by a blend of multi-investigator, multidisciplinary collaborations with resources for quantum simulator software, hardware, and education.This document is a summary from a U.S. National Science Foundation supported workshop held on 16–17 September 2019 in Alexandria, VA. Attendees were charged to identify the scientific and community needs, opportunities, and significant challenges for quantum simulators over the next 2–5 years
Neutrophil to lymphocyte ratio is not related to carotid atherosclerosis progression and cardiovascular events in the primary prevention of cardiovascular disease: results from the IMPROVE study
Inflammation is a component of the pathogenesis of atherosclerosis and is associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). The neutrophil to lymphocyte ratio (NLR) is a possible inflammation metric for the detection of ASCVD risk, although results of prospective studies are highly inconsistent on this topic. We investigated the cross‐sectional relationship between NLR and carotid intima‐media thickness (cIMT) in subjects at moderate‐to‐high ASCVD risk. The prospective association between NLR, cIMT progression, and incident vascular events (VEs) was also explored. In 3341 subjects from the IMT‐Progression as Predictors of VEs (IMPROVE) study, we analyzed the association between NLR, cIMT, and its 15‐month progression. The association between NLR and incident VEs was also investigated. NLR was positively associated with cross‐sectional measures of cIMT, but not with cIMT progression. The association between NLR and cross‐sectional cIMT measures was abolished when adjusted for confounders. No association was found between NRL and incident VEs. Similarly, there were no significant differences in the hazard ratios (HRs) of VEs across NLR quartiles. NLR was neither associated with the presence and progression of carotid atherosclerosis, nor with the risk of VEs. Our findings do not support the role of NLR as a predictor of the risk of atherosclerosis progression and ASCVD events in subjects at moderate‐to‐high ASCVD risk, in primary prevention. However, the usefulness of NLR for patients at a different level of ASCVD risk cannot be inferred from this study
Determinants of carotid wall echolucency in a cohort of European high cardiovascular risk subjects: A cross-sectional analysis of IMPROVE baseline data
Echolucency, a measure of plaque instability associated with increased cardiovascular risk, can be assessed in both the carotid plaque and the plaque-free common carotid intima–media (IM) complex as a gray-scale median (plaque-GSM and IM-GSM, respectively). The impact of specific vascular risk factors on these two phenotypes remains uncertain, including the nature and extent of their influence. This study aims to seek the determinants of plaque-GSM and IM-GSM. Plaque-GSM and IM-GSM were measured in subjects from the IMPROVE study cohort (aged 54–79, 46% men) recruited in five European countries. Plaque-GSM was measured in subjects who had at least one IMTmax ≥ 1.5 mm (n = 2138), whereas IM-GSM was measured in all subjects included in the study (n = 3188). Multiple regression with internal cross-validation was used to find independent predictors of plaque-GSM and IM-GSM. Plaque-GSM determinants were plaque-size (IMTmax), and diastolic blood pressure. IM-GSM determinants were the thickness of plaque-free common carotid intima–media complex (PF CC-IMTmean), height, systolic blood pressure, waist/hip ratio, treatment with fibrates, mean corpuscular volume, treatment with alpha-2 inhibitors (sartans), educational level, and creatinine. Latitude, and pack-yearscode were determinants of both plaque-GSM and IM-GSM. The overall models explain 12.0% of plaque-GSM variability and 19.7% of IM-GSM variability. A significant correlation (r = 0.51) was found between plaque-GSM and IM-GSM. Our results indicate that IM-GSM is a weighty risk marker alternative to plaque-GSM, offering the advantage of being readily measurable in all subjects, including those in the early phases of atherosclerosis where plaque occurrence is relatively infrequent
Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study
Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studie
Inhibition of Progenitor Dendritic Cell Maturation by Plasma from Patients with Peripartum Cardiomyopathy: Role in Pregnancy-associated Heart Disease
Dendritic cells (DCs) play dual roles in innate and adaptive immunity based
on their functional maturity, and both innate and adaptive immune responses have
been implicated in myocardial tissue remodeling associated with
cardiomyopathies. Peripartum cardiomyopathy (PPCM) is a rare disorder which
affects women within one month antepartum to five months postpartum. A high
occurrence of PPCM in central Haiti (1 in 300 live births) provided the unique
opportunity to study the relationship of immune activation and DC maturation
to the etiology of this disorder. Plasma samples from two groups (n = 12) of
age- and parity-matched Haitian women with or without evidence of PPCM were
tested for levels of biomarkers of cardiac tissue remodeling and immune
activation. Significantly elevated levels of GM-CSF, endothelin-1, proBNP and
CRP and decreased levels of TGF- were measured in PPCM subjects relative
to controls. Yet despite these findings, in vitro maturation of normal human
cord blood derived progenitor dendritic cells (CBDCs) was significantly
reduced (p < 0.001) in the presence of plasma from PPCM patients relative
to plasma from post-partum control subjects as determined by expression of
CD80, CD86, CD83, CCR7, MHC class II and the ability of these matured CBDCs
to induce allo-responses in PBMCs. These results represent the first findings
linking inhibition of DC maturation to the dysregulation of normal physiologic
cardiac
tissue remodeling during pregnancy and the pathogenesis of PPCM
- …