41 research outputs found

    New Insights into Honey Bee (Apis mellifera) Pheromone Communication. Is the Queen Mandibular Pheromone Alone in Colony Regulation?

    Get PDF
    Background: In social insects, the queen is essential to the functioning and homeostasis of the colony. This influencehas been demonstrated to be mediated through pheromone communication. However, the only social insect forwhich any queen pheromone has been identified is the honey bee (Apis mellifera) with its well-known queenmandibular pheromone (QMP). Although pleiotropic effects on colony regulation are accredited to the QMP, thispheromone does not trigger the full behavioral and physiological response observed in the presence of the queen,suggesting the presence of additional compounds. We tested the hypothesis of a pheromone redundancy in honeybee queens by comparing the influence of queens with and without mandibular glands on worker behavior andphysiology.Results: Demandibulated queens had no detectable (E)-9-oxodec-2-enoic acid (9-ODA), the major compound in QMP,yet they controlled worker behavior (cell construction and queen retinue) and physiology (ovary inhibition) asefficiently as intact queens.Conclusions: We demonstrated that the queen uses other pheromones as powerful as QMP to control the colony. Itfollows that queens appear to have multiple active compounds with similar functions in the colony (pheromoneredundancy). Our findings support two hypotheses in the biology of social insects: (1) that multiple semiochemicalswith synonymous meaning exist in the honey bee, (2) that this extensive semiochemical vocabulary exists because itconfers an evolutionary advantage to the colony

    Chemotaxis by Pseudomonas putida (ATCC 17453) Towards Camphor Involves Cytochrome P450cam (CYP101A1)

    Get PDF
    The camphor-degrading microorganism, Pseudomonas putida strain ATCC 17453, is an aerobic, gram-negative soil bacterium that uses camphor as its sole carbon and energy source. The genes responsible for the catabolic degradation of camphor are encoded on the extra-chromosomal CAM plasmid. A monooxygenase, cytochrome P450cam, mediates hydroxylation of camphor to 5-exo-hydroxycamphor as the first and committed step in the camphor degradation pathway, requiring a dioxygen molecule (O2) from air. Under low O2 levels, P450cam catalyzes the production of borneol via an unusual reduction reaction. We have previously shown that borneol downregulates the expression of P450cam. To understand the function of P450cam and the consequences of down-regulation by borneol under low O2 conditions, we have studied chemotaxis of camphor induced and non-induced P. putida strain ATCC 17453. We have tested camphor, borneol, oxidized camphor metabolites and known bacterial attractants (D)-glucose, (D) - and (L)-glutamic acid for their elicitation chemotactic behavior. In addition, we have used 1-phenylimidazole, a P450cam inhibitor, to investigate if P450cam plays a role in the chemotactic ability of P. putida in the presence of camphor. We found that camphor, a chemoattractant, became toxic and chemorepellent when P450cam was inhibited. We have also evaluated the effect of borneol on chemotaxis and found that the bacteria chemotaxed away from camphor in the presence of borneol. This is the first report of the chemotactic behaviour of P. putida ATCC 17453 and the essential role of P450cam in this process

    Water Oxidation by a Cytochrome P450: Mechanism and Function of the Reaction

    Get PDF
    P450cam (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450cam catalysis is controlled by oxygen levels: at high O2 concentration, P450cam catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using 17O and 2H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450cam, and we present a plausible mechanism that accounts for the 1:1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450cam and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce

    New insights into honey bee (Apis mellifera) pheromone communication. Is the queen mandibular pheromone alone in colony regulation?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In social insects, the queen is essential to the functioning and homeostasis of the colony. This influence has been demonstrated to be mediated through pheromone communication. However, the only social insect for which any queen pheromone has been identified is the honey bee (<it>Apis mellifera</it>) with its well-known queen mandibular pheromone (QMP). Although pleiotropic effects on colony regulation are accredited to the QMP, this pheromone does not trigger the full behavioral and physiological response observed in the presence of the queen, suggesting the presence of additional compounds. We tested the hypothesis of a pheromone redundancy in honey bee queens by comparing the influence of queens with and without mandibular glands on worker behavior and physiology.</p> <p>Results</p> <p>Demandibulated queens had no detectable (E)-9-oxodec-2-enoic acid (9-ODA), the major compound in QMP, yet they controlled worker behavior (cell construction and queen retinue) and physiology (ovary inhibition) as efficiently as intact queens.</p> <p>Conclusions</p> <p>We demonstrated that the queen uses other pheromones as powerful as QMP to control the colony. It follows that queens appear to have multiple active compounds with similar functions in the colony (pheromone redundancy). Our findings support two hypotheses in the biology of social insects: (1) that multiple semiochemicals with synonymous meaning exist in the honey bee, (2) that this extensive semiochemical vocabulary exists because it confers an evolutionary advantage to the colony.</p

    Synthesis of Isotopically Labelled Disparlure Enantiomers and Application to the Study of Enantiomer Discrimination in Gypsy Moth Pheromone‐Binding Proteins

    Get PDF
    To study the binding mechanism of disparlure (7,8)-epoxy-2-methyloctadecane enantiomers with pheromone-binding proteins (PBPs) of the gypsy moth, oxygen-17 or 18 and 5,5,6,6-deuterium labelled disparlure enantiomers were prepared in an efficient, enantioselective route. Key steps involve the asymmetric α-chlorination of dodecanal by SOMO catalysis and Mitsunobu inversion of a 1, 2-chlorohydrin. The pheromone, (+)-disparlure (7R, 8S), was tested in two infested zones, demonstrating that it is very attractive towards male gypsy moths. Studies of the binding of (+)-disparlure and its antipode to gypsy moth PBPs by 2H &amp;17O NMR at 600 MHz are reported. Chemical shifts, spin-lattice relaxation times and transverse relaxation times&nbsp; of deuterium atoms of disparlure enantiomers in 2H NMR show that binding of disparlure enantiomers to PBP1 differs from binding to PBP2, as expected from their opposite binding preferences (PBP1 binds (-)-disparlure, and PBP2 binds (+)-disparlure more strongly). Models of the disparlure enantiomers bound to one internal binding site and two external binding sites of both PBPs were constructed. The observed chemical shift changes of deuterated ligand signals, from non-bound to bound, T1 and T2 values are correlated with results from the simulations. Together these results suggest that the disparlure enantiomers adopt distinct conformations within the binding sites of the two PBPs and interact with residues that line the sites

    Powersharing and Democratic Survival

    Get PDF
    Democracy is often fragile, especially in states that have recently experienced civil conflict. To protect emerging democracies, many scholars and practitioners recommend political powersharing institutions. Yet there is little empirical research on whether powersharing promotes democratic survival, and some concern that it can limit electoral accountability. To fill this gap, we differentiate between inclusive, dispersive, and constraining powersharing and analyze their effects on democratic survival using a new global dataset. We find sharp distinctions across types of powersharing and political context. Inclusive powersharing, such as ethnic quotas, promotes democratic survival only in post-conflict settings. In contrast, dispersive institutions such as federalism destabilize post-conflict democracies. Only constraining powersharing consistently facilitates democratic survival in societies both with and without recent conflict. Our results suggest that institution-builders and international organizations should prioritize institutions that constrain leaders, including independent judiciaries, civilian control of the armed forces, and constitutional protections of individual and group rights

    NADPH oxidase-derived H2O2 subverts pathogen signaling by oxidative phosphotyrosine conversion to PB-DOPA

    Get PDF
    Strengthening the host immune system to fully exploit its potential as antimicrobial defense is vital in countering antibiotic resistance. Chemical compounds released during bidirectional host–pathogen cross-talk, which follows a sensing-response paradigm, can serve as protective mediators. A potent, diffusible messenger is hydrogen peroxide (H(2)O(2)), but its consequences on extracellular pathogens are unknown. Here we show that H(2)O(2), released by the host on pathogen contact, subverts the tyrosine signaling network of a number of bacteria accustomed to low-oxygen environments. This defense mechanism uses heme-containing bacterial enzymes with peroxidase-like activity to facilitate phosphotyrosine (p-Tyr) oxidation. An intrabacterial reaction converts p-Tyr to protein-bound dopa (PB-DOPA) via a tyrosinyl radical intermediate, thereby altering antioxidant defense and inactivating enzymes involved in polysaccharide biosynthesis and metabolism. Disruption of bacterial signaling by DOPA modification reveals an infection containment strategy that weakens bacterial fitness and could be a blueprint for antivirulence approaches

    Enrichment of H 2

    No full text
    corecore