8 research outputs found

    High incidence of severe cyclosporine neurotoxicity in children affected by haemoglobinopaties undergoing myeloablative haematopoietic stem cell transplantation: early diagnosis and prompt intervention ameliorates neurological outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurotoxicity is a recognized complication of cyclosporine A (CSA) treatment. The incidence of severe CSA-related neurological complications following hematopoietic stem cell transplantation (HSCT) is 4-11%.</p> <p>Methods</p> <p>We describe 6 cases of CSA related neurotoxicity out of 67 matched related HSCT performed in paediatric Middle East patients affected by haemoglobinopaties (5 beta thalassemia major, 1 sickle cell disease-SCD). Conditioning regimen consisted of iv busulphan, cyclophosphamide and graft-versus-host-disease (GvHD) prophylaxis with CSA, methylprednisolone, methotrexate and ATG.</p> <p>Results</p> <p>All 6 patients presented prodromes such as arterial hypertension, headache, visual disturbances and vomiting, one to two days before overt CSA neurotoxicity. CSA neurotoxicity consisted of generalized seizures, signs of endocranial hypertension and visual disturbances at a median day of onset of 11 days after HSCT (range +1 to +40). Brain magnetic resonance imaging (MRI) performed in all subjects showed reversible leukoencephalopathy predominantly in the posterior regions of the brain (PRES) in 5/6 patients. EEG performed in 5/6 patients was always abnormal. Neurotoxicity was not explainable by high CSA blood levels, as all patients had CSA in the therapeutic range with a median of 178 ng/ml (range 69-250). CSA was promptly stopped and switched to tacrolimus with disappearance of clinical and radiological findings. All patients are symptoms-free at a median follow up of 882 days (range 60-1065).</p> <p>Conclusions</p> <p>Our experience suggests that paediatric patients with haemoglobinopaties have a high incidence of CSA related neurological events with no correlation between serum CSA levels and neurotoxicity. Prognosis is good following CSA removal. Specific prodromes such as arterial hypertension, headache or visual disturbances occurring in the early post-transplant period should be carefully evaluated with electrophysiological and MRI-based imaging in order to intervene promptly and avoid irreversible sequels.</p

    Correction of beta-thalassemia major by gene transfer in haematopoietic progenitors of pediatric patients

    Get PDF
    Beta-thalassemia is a common monogenic disorder due to mutations in the beta-globin gene and gene therapy, based on autologous transplantation of genetically corrected haematopoietic stem cells (HSCs), holds the promise to treat patients lacking a compatible bone marrow (BM) donor. We recently showed correction of murine beta-thalassemia by gene transfer in HSCs with the GLOBE lentiviral vector (LV), expressing a transcriptionally regulated human beta-globin gene. Here, we report successful correction of thalassemia major in human cells, by studying a large cohort of pediatric patients of diverse ethnic origin, carriers of different mutations and all candidates to BM transplantation. Extensive characterization of BM-derived CD34(+) cells before and following gene transfer shows the achievement of high frequency of transduction, restoration of haemoglobin A synthesis, rescue from apoptosis and correction of ineffective erythropoiesis. The procedure does not significantly affect the differentiating potential and the relative proportion of haematopoietic progenitors. Analysis of vector integrations shows preferential targeting of transcriptionally active regions, without bias for cancer-related genes. Overall, these results provide a solid rationale for a future clinical translation

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text
    Abstract An updated inventory of Brazilian seed plants is presented and offers important insights into the country's biodiversity. This work started in 2010, with the publication of the Plants and Fungi Catalogue, and has been updated since by more than 430 specialists working online. Brazil is home to 32,086 native Angiosperms and 23 native Gymnosperms, showing an increase of 3% in its species richness in relation to 2010. The Amazon Rainforest is the richest Brazilian biome for Gymnosperms, while the Atlantic Rainforest is the richest one for Angiosperms. There was a considerable increment in the number of species and endemism rates for biomes, except for the Amazon that showed a decrease of 2.5% of recorded endemics. However, well over half of Brazillian seed plant species (57.4%) is endemic to this territory. The proportion of life-forms varies among different biomes: trees are more expressive in the Amazon and Atlantic Rainforest biomes while herbs predominate in the Pampa, and lianas are more expressive in the Amazon, Atlantic Rainforest, and Pantanal. This compilation serves not only to quantify Brazilian biodiversity, but also to highlight areas where there information is lacking and to provide a framework for the challenge faced in conserving Brazil's unique and diverse flora
    corecore