20 research outputs found

    A novel bocavirus in canine liver

    Get PDF
    Background: Bocaviruses are classified as a genus within the Parvoviridae family of single-stranded DNA viruses and are pathogenic in some mammalian species. Two species have been previously reported in dogs, minute virus of canines (MVC), associated with neonatal diseases and fertility disorders; and Canine bocavirus (CBoV), associated with respiratory disease. Findings: In this study using deep sequencing of enriched viral particles from the liver of a dog with severe hemorrhagic gastroenteritis, necrotizing vasculitis, granulomatous lymphadenitis and anuric renal failure, we identified and characterized a novel bocavirus we named Canine bocavirus 3 (CnBoV3). The three major ORFs of CnBoV3 (NS1, NP1 and VP1) shared less than 60% aa identity with those of other bocaviruses qualifying it as a novel species based on ICTV criteria. Inverse PCR showed the presence of concatemerized or circular forms of the genome in liver. Conclusions: We genetically characterized a bocavirus in a dog liver that is highly distinct from prior canine bocaviruses found in respiratory and fecal samples. Its role in this animal’s complex disease remains to be determined. Keywords: Canine bocavirus 3; Episome; Coinfectio

    Adelante / Endavant

    Get PDF
    Séptimo desafío por la erradicación de la violencia contra las mujeres del Institut Universitari d’Estudis Feministes i de Gènere "Purificación Escribano" de la Universitat Jaume

    Rosavirus: the prototype of a proposed new genus of the Picornaviridae family

    No full text
    We describe a 8,724-nucleotide-long picornavirus genome encoding a single 2,470-aa polyprotein obtained from the feces of a wild mouse. Rosavirus is genetically closest to the double ORF Dicipivirus found in canine feces that is currently the only picornavirus with a second internal ribosome entry site (IRES). Of note, a section of rosavirus' 5'UTR showed strong sequence and structural conservation with the type II IRES from the Parechovirus and Hungarovirus genera possibly reflecting exchange of genetic modules between genera. Based on genetic distance criteria rosavirus qualifies as prototype of a new genus of the Picornaviridae family

    Schematic flowchart showing testing of FFPE vulvar tissues from 28 cases of high-grade differentiated VIN (dVIN) and usual-type VIN (uVIN).

    No full text
    <p>Histological (yellow boxes), p16<sup>ink4a</sup> immunostaining (yellow boxes), and genomic (pink boxes) analyses were performed. Abbreviations: FFPE, formalin-fixed, paraffin-embedded; VIN, vulvar intraepithelial neoplasia; VSCC, vulvar squamous cell carcinoma; PCR, polymerase chain reaction.</p

    Number of next-generation sequencing (NGS) reads at each step of the SURPI bioinformatics pipeline for pathogen identification.

    No full text
    <p>Number of next-generation sequencing (NGS) reads at each step of the SURPI bioinformatics pipeline for pathogen identification.</p

    Ranked Z-score analysis of ViroChip microarrays corresponding to dVIN samples and controls for virus identification.

    No full text
    <p>*Criteria: ≥5 hits out of top 50 probes (10%) and probe hits mapped to ≥3 distinct locations on the viral genome.</p><p>**Distinct locations: mapped probe locations on the viral genome separated by at least 5% of the total genome length.</p><p>Ranked Z-score analysis of ViroChip microarrays corresponding to dVIN samples and controls for virus identification.</p

    PCR testing for Human herpesvirus 3 (HHV) and Suid herpesvirus 1 (SuHV1).

    No full text
    <p>(A) PCR amplification was performed using a primer set designed from a single HHV3 read found in the dVIN sample 1 next-generation sequencing (NGS) data. The expected 163-bp product, identified as HHV3 by confirmatory Sanger sequencing, is only seen in an HHV3-positive cerebrospinal fluid (CSF) sample processed in parallel on the same NGS run, indicating that the single HHV3 read in the dVIN sample 1 NGS dataset was most likely due to cross-contamination. (B) PCR amplification was performed using a primer set designed from two SuHV1 ViroChip probes. Note that the dVIN sample 1 is negative for SuHV1. Abbreviations: L, DNA ladder; d1-d10, dVIN samples 1 through 10; N, normal skin vulvar biopsy; H, HHV3-positive CSF sample;; ntC, no template control.</p

    Pan-viral analysis of high-grade dVIN samples.

    No full text
    <p>(A) Tissue samples (x-axis) were analyzed using the ViroChip, a pan-viral DNA detection microarray. The cluster heat map of HPV probes (y-axis) shows only one strong papillomavirus cluster corresponding to the HPV18 cervical cancer positive control (PC). Other scattered clusters corresponding to the dVIN samples (tissue samples 1–10) consisted of lower-intensity probes representing multiple papillomavirus subtypes, including HPV7, HPV34, HPV81, and HPV 83 (clusters I, II, and III). Confirmatory PCR testing from the HPV L1 region using conserved primers was negative for all of the dVIN samples (gel, left). PCR testing using primers specific for each HPV subtype was also negative (2 gels, right), with the exception of bands in dVIN sample 5 that were cloned and sequenced as <i>Pseudomonas aeruginosa</i> (asterisks), and attributed to bacterial surface contamination of the FFPE block. Thus, the dVIN samples were deemed negative for HPV infection. The red color bar denotes the normalized magnitude of hybridization intensity. (B) Mapping of 16 HPV18 probes out of the top 50 (by ranked Z-score analysis) to the HPV18 genome in the cervical cancer positive control. Abbreviations: HPV, human papillomavirus; VIN, vulvar intraepithelial neoplasia; N, normal skin vulvar biopsy; PC, positive control; ntC, no template control.</p

    Histology and p16<sup>ink4a</sup> immunostaining patterns of high-grade dVIN and uVIN samples.

    No full text
    <p>(A) dVIN, showing characteristic elongation and anastomosis of rete ridges. The epithelium shows enlarged keratinoocytes with abundant eosinophilic cytoplasm. The inset displays prominent cytologic atypia localized to the lower 1/3 of the epithelium. (B) uVIN, warty subtype. A spiked surface epithelium with hyperkeratosis and hypergranulosis is visualized. The inset displays full-thickness cytologic atypia. (C) p16<sup>ink4a</sup> immunostaining is negative in dVIN. (D) Full-thickness p16<sup>ink4a</sup> immunopositivity is seen in high-grade uVIN. Abbreviations: dVIN, differentiated vulvar intraepithelial neoplasia; uVIN, usual-type vulvar intraepithelial neoplasia.</p
    corecore