49 research outputs found
Adding marrow adiposity and cortical porosity to femoral neck areal bone mineral density improves the discrimination of women with nonvertebral fractures from controls
Advancing age is accompanied by a reduction in bone formation and remodeling imbalance, which produces microstructural deterioration. This may be partly caused by a diversion of mesenchymal cells towards adipocytes rather than osteoblast lineage cells. We hypothesized that microstructural deterioration would be associated with an increased marrow adiposity, and each of these traits would be independently associated with nonvertebral fractures and improve discrimination of women with fractures from controls over that achieved by femoral neck (FN) areal bone mineral density (aBMD) alone. The marrow adiposity and bone microstructure were quantified from HR‐pQCT images of the distal tibia and distal radius in 77 women aged 40 to 70 years with a recent nonvertebral fracture and 226 controls in Melbourne, Australia. Marrow fat measurement from HR‐pQCT images was validated using direct histologic measurement as the gold standard, at the distal radius of 15 sheep, with an agreement (R2 = 0.86, p < 0.0001). Each SD higher distal tibia marrow adiposity was associated with 0.33 SD higher cortical porosity, and 0.60 SD fewer, 0.24 SD thinner, and 0.72 SD more‐separated trabeculae (all p < 0.05). Adjusted for age and FN aBMD, odds ratios (ORs) (95% CI) for fracture per SD higher marrow adiposity and cortical porosity were OR, 3.39 (95% CI, 2.14 to 5.38) and OR, 1.79 (95% CI, 1.14 to 2.80), respectively. Discrimination of women with fracture from controls improved when cortical porosity was added to FN aBMD and age (area under the receiver‐operating characteristic curve [AUC] 0.778 versus 0.751, p = 0.006) or marrow adiposity was added to FN aBMD and age (AUC 0.825 versus 0.751, p = 0.002). The model including FN aBMD, age, cortical porosity, trabecular thickness, and marrow adiposity had an AUC = 0.888. Results were similar for the distal radius. Whether marrow adiposity and cortical porosity indices improve the identification of women at risk for fractures requires validation in prospective studies. © 2019 American Society for Bone and Mineral Research
Layer-by-Layer Assembled Antisense DNA Microsponge Particles for Efficient Delivery of Cancer Therapeutics
Antisense oligonucleotides can be employed as a potential approach to effectively treat cancer. However, the inherent instability and inefficient systemic delivery methods for antisense therapeutics remain major challenges to their clinical application. Here, we present a polymerized oligonucleotides (ODNs) that self-assemble during their formation through an enzymatic elongation method (rolling circle replication) to generate a composite nucleic acid/magnesium pyrophosphate sponge-like microstructure, or DNA microsponge, yielding high molecular weight nucleic acid product. In addition, this densely packed ODN microsponge structure can be further condensed to generate polyelectrolyte complexes with a favorable size for cellular uptake by displacing magnesium pyrophosphate crystals from the microsponge structure. Additional layers are applied to generate a blood-stable and multifunctional nanoparticle via the layer-by-layer (LbL) assembly technique. By taking advantage of DNA nanotechnology and LbL assembly, functionalized DNA nanostructures were utilized to provide extremely high numbers of repeated ODN copies for efficient antisense therapy. Moreover, we show that this formulation significantly improves nucleic acid drug/carrier stability during in vivo biodistribution. These polymeric ODN systems can be designed to serve as a potent means of delivering stable and large quantities of ODN therapeutics systemically for cancer treatment to tumor cells at significantly lower toxicity than traditional synthetic vectors, thus enabling a therapeutic window suitable for clinical translation.United States. Dept. of Defense. Ovarian Cancer Research Program (Teal Innovator Award Grant OC120504)Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award 1F32EB017614-01)National Science Foundation (U.S.). Graduate Research Fellowshi
L-lysine as adjunctive treatment in patients with schizophrenia: a single-blinded, randomized, cross-over pilot study
<p>Abstract</p> <p>Background</p> <p>Accumulating evidence suggests that the brain's nitric oxide (NO) signalling system may be involved in the pathophysiology of schizophrenia and could thus constitute a novel treatment target. The study was designed to investigate the benefit of L-lysine, an amino acid that interferes with NO production, as an add-on treatment for schizophrenia.</p> <p>Methods</p> <p>L-lysine, 6 g/day, was administered to 10 patients with schizophrenia as an adjunctive to their conventional antipsychotic medication. The study was designed as a single-blinded, cross-over study where patients were randomly assigned to initial treatment with either L-lysine or placebo and screened at baseline, after four weeks when treatment was crossed over, and after eight weeks.</p> <p>Results</p> <p>L-lysine treatment caused a significant increase in blood concentration of L-lysine and was well tolerated. A significant decrease in positive symptom severity, measured by the Positive And Negative Syndrome Scale (PANSS), was detected. A certain decrease in score was also observed during placebo treatment and the effects on PANSS could not unequivocally be assigned to the L-lysine treatment. Furthermore, performance on the Wisconsin Card Sorting Test was significantly improved compared to baseline, an effect probably biased by training. Subjective reports from three of the patients indicated decreased symptom severity and enhanced cognitive functioning.</p> <p>Conclusions</p> <p>Four-week L-lysine treatment of 6 g/day caused a significant increase in blood concentration of L-lysine that was well tolerated. Patients showed a significant decrease in positive symptoms as assessed by PANSS in addition to self-reported symptom improvement by three patients. The NO-signalling pathway is an interesting, potentially new treatment target for schizophrenia; however, the effects of L-lysine need further evaluation to decide the amino acid's potentially beneficial effects on symptom severity in schizophrenia.</p> <p>Trial registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT00996242">NCT00996242</a></p
The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats
<p>Abstract</p> <p>Background</p> <p>Activation of peroxisome proliferator-activated receptor (PPAR)gamma is associated with bone loss and increased fracture risk, while PPARalpha activation seems to have positive skeletal effects. To further explore these effects we have examined the effect of the PPARalpha agonists fenofibrate and Wyeth 14643, and the PPARgamma agonist pioglitazone, on bone mineral density (BMD), bone architecture and biomechanical strength in ovariectomized rats.</p> <p>Methods</p> <p>Fifty-five female Sprague-Dawley rats were assigned to five groups. One group was sham-operated and given vehicle (methylcellulose), the other groups were ovariectomized and given vehicle, fenofibrate, Wyeth 14643 and pioglitazone, respectively, daily for four months. Whole body and femoral BMD were measured by dual X-ray absorptiometry (DXA), and biomechanical testing of femurs, and micro-computed tomography (microCT) of the femoral shaft and head, were performed.</p> <p>Results</p> <p>Whole body and femoral BMD were significantly higher in sham controls and ovariectomized animals given fenofibrate, compared to ovariectomized controls. Ovariectomized rats given Wyeth 14643, maintained whole body BMD at sham levels, while rats on pioglitazone had lower whole body and femoral BMD, impaired bone quality and less mechanical strength compared to sham and ovariectomized controls. In contrast, cortical volume, trabecular bone volume and thickness, and endocortical volume were maintained at sham levels in rats given fenofibrate.</p> <p>Conclusions</p> <p>The PPARalpha agonist fenofibrate, and to a lesser extent the PPARaplha agonist Wyeth 14643, maintained BMD and bone architecture at sham levels, while the PPARgamma agonist pioglitazone exaggerated bone loss and negatively affected bone architecture, in ovariectomized rats.</p