23 research outputs found

    Observational Signatures of Quantum Gravity in Interferometers

    Get PDF
    We consider the uncertainty in the arm length of an interferometer due to metric fluctuations from the quantum nature of gravity, proposing a concrete microscopic model of energy fluctuations in holographic degrees of freedom on the surface bounding a causally connected region of spacetime. In our model, fluctuations longitudinal to the beam direction accumulate in the infrared and feature strong long distance correlation in the transverse direction. This leads to a signal that could be observed in a gravitational wave interferometer. We connect the positional uncertainty principle arising from our calculations to the 't Hooft gravitational S-matrix.Comment: 6 pages, 1 figur

    Wall Crossing, Discrete Attractor Flow and Borcherds Algebra

    Get PDF
    The appearance of a generalized (or Borcherds-) Kac-Moody algebra in the spectrum of BPS dyons in N=4, d=4 string theory is elucidated. From the low-energy supergravity analysis, we identify its root lattice as the lattice of the T-duality invariants of the dyonic charges, the symmetry group of the root system as the extended S-duality group PGL(2,Z) of the theory, and the walls of Weyl chambers as the walls of marginal stability for the relevant two-centered solutions. This leads to an interpretation for the Weyl group as the group of wall-crossing, or the group of discrete attractor flows. Furthermore we propose an equivalence between a "second-quantized multiplicity" of a charge- and moduli-dependent highest weight vector and the dyon degeneracy, and show that the wall-crossing formula following from our proposal agrees with the wall-crossing formula obtained from the supergravity analysis. This can be thought of as providing a microscopic derivation of the wall-crossing formula of this theory.Comment: This is a contribution to the Special Issue on Kac-Moody Algebras and Applications, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    A Black Hole Levitron

    Get PDF
    We study the problem of spatially stabilising four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes kept in external fields we find that taking a continuum limit of Denef et al's multi-center solutions provides a supergravity description of such backgrounds within which a black hole can be trapped in a given volume. This is realised by levitating a black hole over a magnetic dipole base. We comment on how such a construction resembles a mechanical Levitron.Comment: 5 pages, 1 figur

    Towards non-AdS Holography via the Long String Phenomenon

    Get PDF
    The microscopic description of AdS space obeys the holographic principle in the sense that the number of microscopic degrees of freedom is given by the area of the holographic boundary. We assume the same applies to the microscopic holographic theories for non-AdS spacetimes, specifically for Minkowski, de Sitter, and AdS below its curvature radius. By taking general lessons from AdS/CFT we derive the cut-off energy of the holographic theories for these non-AdS geometries. Contrary to AdS/CFT, the excitation energy decreases towards the IR in the bulk, which is related to the negative specific heat of black holes. We construct a conformal mapping between the non-AdS geometries and AdS3 ⁣× ⁣SqAdS_3\!\times\! S^{q} spacetimes, and relate the microscopic properties of the holographic theories for non-AdS spaces to those of symmetric product CFTs. We find that the mechanism responsible for the inversion of the energy-distance relation corresponds to the long string phenomenon. This same mechanism naturally explains the negative specific heat for non-AdS black holes and the value of the vacuum energy in (A)dS spacetimes.Comment: 38+3 pages, 5 figures. v2: typos corrected, references added. v3: added refs and clarifications in the conclusion; matches published versio

    Observational Signatures of Quantum Gravity in Interferometers

    Get PDF
    We consider the uncertainty in the arm length of an interferometer due to metric fluctuations from the quantum nature of gravity, proposing a concrete microscopic model of energy fluctuations in holographic degrees of freedom on the surface bounding a causally connected region of spacetime. In our model, fluctuations longitudinal to the beam direction accumulate in the infrared and feature strong long distance correlation in the transverse direction. This leads to a signal that could be observed in a gravitational wave interferometer. We connect the positional uncertainty principle arising from our calculations to the 't Hooft gravitational S-matrix

    Quantum Black Hole Evaporation

    Full text link
    We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to derive some algebraic properties of the scattering matrix and prove that the final state contains all initial information.Comment: 37 pages (figs 2 and 3 included as uuencoded compressed tar file), Latex, needs epsf.tex, PUPT-1395, IASSNS-HEP-93/25 (revised version has minor corrections, one reference added

    N=8 superconformal gauge theories and M2 branes

    Get PDF
    Based on recent developments, in this letter we find 2+1 dimensional gauge theories with scale invariance and N=8 supersymmetry. The gauge theories are defined by a Lagrangian and are based on an infinite set of 3-algebras, constructed as an extension of ordinary Lie algebras. Recent no-go theorems on the existence of 3-algebras are circumvented by relaxing the assumption that the invariant metric is positive definite. The gauge group is non compact, and its maximally compact subgroup can be chosen to be any ordinary Lie group, under which the matter fields are adjoints or singlets. The theories are parity invariant and do not admit any tunable coupling constant. In the case of SU(N) the moduli space of vacua contains a branch of the form (R^8)^N/S_N. These properties are expected for the field theory living on a stack of M2 branes.Comment: 14 pages, no figure

    Dying Dyons Don't Count

    Full text link
    The dyonic 1/4-BPS states in 4D string theory with N=4 spacetime supersymmetry are counted by a Siegel modular form. The pole structure of the modular form leads to a contour dependence in the counting formula obscuring its duality invariance. We exhibit the relation between this ambiguity and the (dis-)appearance of bound states of 1/2-BPS configurations. Using this insight we propose a precise moduli-dependent contour prescription for the counting formula. We then show that the degeneracies are duality-invariant and are correctly adjusted at the walls of marginal stability to account for the (dis-)appearance of the two-centered bound states. Especially, for large black holes none of these bound states exists at the attractor point and none of these ambiguous poles contributes to the counting formula. Using this fact we also propose a second, moduli-independent contour which counts the "immortal dyons" that are stable everywhere.Comment: 27 pages, 2 figures; one minus sign correcte

    Penrose Limits and Non-local theories

    Full text link
    We investigate Penrose limits of two classes of non-local theories, little string theories and non-commutative gauge theories. Penrose limits of the near-horizon geometry of NS5-branes help to shed some light on the high energy spectrum of little string theories. We attempt to understand renormalization group flow in these theories by considering Penrose limits wherein the null geodesic also has a radial component. In particular, we demonstrate that it is possible to construct a pp-wave spacetime which interpolates between the linear dilaton and the AdS regions for the Type IIA NS5-brane. Similar analysis is considered for the holographic dual geometry to non-commutative field theories.Comment: 27 pages, LaTeX; v2: added reference
    corecore