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We consider the uncertainty in the arm length of an interferometer due to metric fluctuations
from the quantum nature of gravity, proposing a concrete microscopic model of energy fluctuations
in holographic degrees of freedom on the surface bounding a causally connected region of spacetime.
In our model, fluctuations longitudinal to the beam direction accumulate in the infrared and feature
strong long distance correlation in the transverse direction. This leads to a signal that could be
observed in a gravitational wave interferometer. We connect the positional uncertainty principle
arising from our calculations to the 't Hooft gravitational S-matrix.

Introduction. The quantum mechanical description
of gravity together with the other forces remains one of
the most important questions in physics. While general
relativity can be quantized as an effective field theory
valid at low energies, and there has been significant the-
oretical progress in understanding other aspects of quan-
tum gravity, signatures of the quantum nature of gravity
have so far remained stubbornly immune to observation.

An important clue towards the ultimate theory of
quantum gravity is provided by the holographic princi-
ple [1, 2]. One of its implications is the covariant en-
tropy bound [3], which states that the entropy associ-
ated to region bounded by null geodesics does not ex-
ceed A/AGp, where A denotes the area of the surface
and Newton’s constant is identified with the square of
the Planck length via 87Gy = I2, with [, ~ 107%°m.
The holographic principle suggests that the total number
of microscopic degrees of freedom associated to a given
region of space (defined by the maximal entropy) is given
by the area of the surrounding surface in Planck units.
In this form the holographic principle is known to be re-
alized in spacetimes with negative cosmological constant
[4], and is firmly incorporated in the framework of the
AdS/CFT correspondence [5].

Motivated by the holographic principle, one is tempted
to postulate that the microscopic spacetime degrees of
freedom, also in flat spacetime, can be identified with
Planck size pixels on the surface bounding a causally con-
nected part of space. The spacetime volume would then
emerge in the infrared from these holographic spacetime
quanta. One of the intriguing aspects of the holographic
principle is that, to ensure the validity of the entropy
bound, the spacetime degrees of freedom are necessar-
ily correlated in the infrared. This raises the question
of whether Planck scale physics could appear at much
longer, potentially observable, length scales.

Our goal in this Letter is to investigate whether fluctu-
ations due to the graininess of spacetime can potentially
lead to observable signatures. Normal intuition would
say that, since the natural length and time scale asso-
ciated with the quantum nature of spacetime is Planck-
ian, that no feasible experiment exists that could mea-
sure its effects. We will argue, however, that when com-

bined with important infrared effects naturally expected
from holography, the accumulative effect of Planck scale
fluctuations can be transmuted to observable time and
length scales. Because of their sensitivity to exquisitely
short distance scales, gravitational wave interferometers
are an ideal testing ground for these ideas.

We will identify the required theoretical conditions
that need to be satisfied to obtain observable effects, and
construct a concrete holographic model that obeys those
conditions. After showing that uncorrelated Planck-
ian fluctuations are not macroscopically observable, we
demonstrate that fluctuations with sufficient transverse
correlations in the infrared do lead to observable effects.
The appearance of transverse correlations is crucial and
suggests a holographic description in which the longitu-
dinal and transverse behavior of the spacetime degrees of
freedom are treated on a different footing.

We will build an explicit holographic model in terms
of Planck-size pixels that saturate the holographic bound
and have energy fluctuations that cause the spatial length
L of a causally connected region of space to fluctuate.
The transverse correlations are generated through the
Newtonian potential of these energy fluctuations, allow-
ing us to make a concrete prediction for the spectrum of
length fluctuations in an interferometer. These fluctua-
tions imply a spacetime uncertainty relation in the longi-
tudinal direction, which we connect, albeit in a modified
form, to the gravitational S-matrix approach of 't Hooft
(see Refs. [6, 7]).

While there have been several previous studies seek-
ing to heuristically connect holography to interferome-
try (e.g. [8-12]), our theoretical description is struc-
turally unique in its holographic set-up. And although
the first steps we take-employing a Planckian random
walk—shares commonalities with these works, our ap-
proach differs in the sense that we present a concrete
theoretical model leading to length fluctuations along
the longitudinal direction with a distinctive signature for
strong transverse correlations, which is, as a consequence,
macroscopically observable in an interferometer. A phe-
nomenological result is that constraints from the images
of distant astrophysical sources derived for uncorrelated
fluctuations in Refs. [13, 14] do not apply to our model.
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Length fluctuations with Planckian white noise.
In this paper we consider a toy experimental set-up,
shown in Fig. 1, in which the arm length L of an
interferometer is measured after a single light crossing.
In this idealized scenario the length fluctuations §L due
to quantum fluctuations in the metric is given by

SL(t) = ;/OLdz h(t+2—L) (1)

where h = h,, is the metric component along the light
beam propagation (see e.g. [15]). The magnitude of these
length fluctuations is normally expressed in terms of the
power spectral density (PSD)

S(w,t) = /OodT <‘SLL@‘SL(’5L_7)> T (2)
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Let us first consider a simple model with a white noise
signal of Planckian amplitude

(h(t+21—L)h(t+2z2—L—7)) = Cl,6(T+21—22), (3)
where [, = v/87Gy. This leads to a PSD of the form

Cl, sin®? wL
Sw) = e @

In this simple model the length fluctuations (§L?) obey
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and thus grow linearly with L [8-12]. This signal could
in principle be observable, since the peak sensitivity for
gravitational wave interferometers is right around the
Planck scale: S(w,t) S I,. Over the next sections our
goal will be to show how some of the generic behavior in
Egs. 4, 5 can arise from a holographic model, motivat-
ing the size of the constant C', with crucial observational
effects arising from angular correlations. In addition, in
experiments like LIGO and Virgo a typical photon tra-
verses the interferometer arm multiple times before being
measured. In this paper we continue to focus on our sim-
ple set up and defer the detailed discussion of multiple
crossings to future work.

Holographic Scenario and Basic Postulates.
Our aim in the following is to derive a result similar to
Eq. 5 from a holographic scenario, in which the holo-
graphic surface is fixed by the light path of a photon, as
depicted in Fig. 1. In order to clearly delineate between
theoretical input and observational consequences, we will
state here our three basic postulates:

1. Statistical independence of small scale fluctuations.
We postulate that the length fluctuation d L can be
obtained by subdividing the interferometer arm in
segments and summing over the statistically inde-
pendent length fluctuations of each segment. This
postulate is equivalent to the Ansatz in Eq. 3 and
implies that length fluctuations, §L2, accumulate
linearly with distance, as shown in Eq. 5.
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FIG. 1. The interferometer together with the spacetime di-
agram for a single crossing of a photon in the signal beam.
The interferometer at time ¢ is contained in a causal diamond
centered at the beam splitter and with the photon path on its
null boundary.

2. Holographic principle in flat spacetime. We postu-
late that the holographic principle also applies to
Minkowski spacetime. It states that the maximal
entropy carried by the microscopic degrees of free-
dom associated with a finite region of flat spacetime
bounded by null geodesics is S = A/4Gy. This
bound is saturated for a region of space whose null
boundary coincides with a horizon.

3. Universality of metric fluctuations at horizons. We
postulate that metric fluctuations near null surfaces
associated with a horizon are universal and follow
from the entropy and temperature using standard
thermodynamic considerations. This postulate im-
plies that metric fluctuations near a Rindler-type
horizon are identical to those near a black hole hori-
zon with the same temperature and entropy.

The first postulate implies that the ultraviolet Planck-
ian fluctuations accumulate in the longitudinal direction
along the interferometer arm. The second and third pos-
tulate allow us to determine the size and transversal
correlations of the length fluctuations from the metric
perturbations near the holographic surface surrounding
the interferometer. To be able to apply the third pos-
tulate we will identify the boundary of the holographic
surface with the event horizon of a (family of) Rindler
observer(s). By following a reasoning similar to what
has been considered in the context of black holes (see
Ref. [16]) we show that energy fluctuations of the holo-
graphic degrees of freedom lead to an uncertainty in the
position of the horizon. We subsequently translate this



uncertainty in the horizon position to arm length fluc-
tuations, L, of the same size as Eq. 5. Because the
fluctuations are an infrared effect on the horizon, we find
that they are macroscopic and carry strong angular cor-
relations. We will compute these correlations explicitly
and discuss the connection to the results of 't Hooft.
Towards macroscopic effects in interferometers.
The results in Egs. 3-5, that were derived from the sim-
ple 1D-model, are by themselves not sufficient to show
an effect. In order to be observable in a realistic ex-
perimental set up, the fluctuations must be coherent at
macroscopic spacetime distances. To examine the condi-
tions under which such coherent fluctuations occur, we
extend our model by including the two spatial directions
transverse to the beam direction. Anticipating our holo-
graphic description, we consider metric fluctuations that
depend on only three coordinates, one longitudinal null
direction and two transversal directions, corresponding
to the outside boundary of the causal diamond in Fig. 1,

5L\ (6L I d*ky
il = - dusd i
(), (5,0 w0 L, [ e | G
/d3k2 <h(k Yh(k )>eik1-zleikz-xz
(2m)3 P '
We first consider an Ansatz corresponding to uncorre-
lated white noise in those three dimensions:

(h(k1)h(kz2)) = (2m)6% (k1 + ko) CL3. (7)

This power spectrum implements the principle of statis-
tical independence both in the longitudinal as well as
the transversal directions. This can be seen directly by
computing the PSD and RMS length fluctuations:

(5),(F),) - e ©

In the limit Azy — 0, we recover a signal of an am-
plitude that is in principle within the observable range
and is consistent with Eqs. 4-5. However, for a realistic
macroscopic interferometer, with the beam size centime-
ters across such that Az /l, > 1, this signature would
be unobservable.

Let us consider an alternative Ansatz for the met-
ric fluctuations in which the transversal directions are
treated differently:

cl,

(h(k1)h(k2)) = (2m)*6% (k1 + kQ)M,

(9)
where krg acts as a regulator. Then Eq. (8), in the limit
that kir Az < 1, becomes

<(5LL)1<5LL>2>N &PL log [1/Awrkg].  (10)

Already this result shows important features that the
underlying theory must give, notably that the longitudi-
nal and transverse directions appear on a different foot-
ing. The metric fluctuation in the transverse direction

must be correlated, while the metric fluctuations in the
longitudinal direction accumulate, as in a random walk,
and are transmuted to a low-energy, long-distance signa-
ture. We will show over the next sections how these fea-
tures arise naturally from energy fluctuations on a holo-
graphic surface.

From Minkowski to Schwarzschild-like metric.
The central part of our argument involves utilizing a cor-
respondence between any horizon and a black hole hori-
zon. To show concretely how this applies to the case at
hand, we make two metric transformations, which are
described below. First we define light cone coordinates
u =171+t and v =r —t so that metric becomes

ds* = dudv + dy* + huydu® + hypdv® + ... (11)

where the dots denote the angular components. In this
metric the light paths on the lower and upper half of the
causal diamond shown in Fig. 1 are given by

v =L+ év(u) and u= L+ du(v)

The total length fluctuation §L can be expressed as

dL = (0v(L) + du(L)) /2.

It turns out that only one metric component contributes
to the time delay along each light path. As we will show
in a companion paper, the values for dv(L) and du(L)
can be expressed in terms of the metric fluctuations via

ov(L) :/Ldu P (u, L) (12)

—L

L
ou(L) = /Ldv hoo (L, ).

As a next step, to employ our 3rd postulate, we recast
the metric in the Schwarzschild-like form

dR?
f(R)
in such a way that the light paths of the photon are

mapped onto the event horizon located at f(R) = 0. This
is achieved by making the coordinate transformation

ds® = —f(R)dT? + +7%(d6” + sin® 0d¢?). (13)

uv—L T
(= L)~ L)=42f(R), g "~ T =T ()
where the function f(R) is given by
R
f(R)=1- 7 +29. (15)

Here @ plays the role of the Newtonian potential and
parametrizes the deviations in the geometry due to vac-
uum fluctuations in the energy conjugate to the time T'.

Without any quantum gravity effects, the horizon is
located at R = L. In general, its location is determined
by f(R) = 0. This leads to the following relationship be-
tween the length fluctuations L and Newton’s potential

(57[/2 _ ov(L)ou(L)

= = —80(L). (16)



Here we have put the moment of reflection at 7' = 0, so
that ov(L) and du(L) take the same value. The next step
is to determine the value of the Newton potential ®(L)
that is induced by the vacuum fluctuations in the energy
conjugate to the time coordinate T

Holographic model for spacetime fluctuations.
We are now ready to employ all of our postulates together
to compute the deviations in the Newtonian potential,
Eq. 16. In the following analysis we follow closely the
reasoning of Marolf in Ref. [16] for the quantum thickness
of black hole horizons. Directly applying the holographic
principle to the horizon of the causal diamond gives

A _ 8m2L?

Shor = ——
ST P

(17)

Now the Newtonian potential on the horizon equals

2aM

(L) =~

where AM is the RMS value of the energy fluctuations
in the holographic degrees of freedom. Heuristically, one
expects that AM scales as the square root of the number
of pixels on the horizon, times the typical energy of the
fluctuation, which is given by the Hawking temperature.

One of the standard methods to determine the Hawk-
ing temperature is to go to Euclidean time and impose
that the resulting metric is free from conical singularities.
In this way one finds

(18)

FECOI

Thor = -
h 47 An L

(19)
In the present situation the temperature T}, is mea-
sured by an accelerated observer whose event horizon co-
incides with the photon trajectory and whose own tra-
jectory passes through the origin at 7" = 0. This observer
stays at R = 0 and has T as proper time coordinate.

We now calculate the RMS value of the fluctuations,
by assuming that the vacuum energy E vanishes. This
implies that the free energy F(8) equals

B

F(ﬁ) = —ThorShor = _ﬁ (20)
p

where in the last step we eliminated the length L in fa-
vor of the inverse temperature 8 = 1/T},. = 47 L. In the
canonical ensemble the mass fluctuations AM are ob-
tained by taking the second derivative of the free energy.
One thus obtains

02 1

—372(,31’) = (21)

p

Note that AM ~ Thorv/Shor, as expected from the
heuristic argument. Combining Egs. 16-21, we learn

SL2\  L/(AM?Z)
<L?>_7TL A (22)

Note this has precisely the behavior shown in Eq. 5
needed to be observable, where now we can fix the con-
stant C via the holographic principle. The spectrum, as
shown in Eq. 4, is white noise at low frequencies, but is
filtered at higher frequencies. As we will see, the distinc-
tive experimental signature is in the angular correlations
arising from the Newtonian potential itself.

Angular correlations and ’t Hooft’s S-matrix.
We have considered so far the amplitude of the fluctua-
tions only as a function of the longitudinal coordinates.
Physically it is clear that the fluctuations will also have
an angular dependence, which is described statistically in
terms of the two point correlation function of the coordi-
nate shifts dv(f) and du(r), where I denotes the coordi-
nates on the sphere of radius L. This angular information
can again be determined with the help of the Newtonian
potential, namely by applying a spherical harmonic de-
composition. By generalizing our reasoning to include
the angular coordinates, one obtains the following two
point function for the coordinate shifts

(GoEou() = P Gl R, (23)

where G(T'1,T2) represents the Green function of a mod-
ified Laplacian on the sphere. It obeys
1 L -
(_vgl + L2> G(rl’ r2) = 5(2) (rl’ r2)’ (24)

and appears by integrating the 3D Green function along
the radial direction corresponding to the beam. At short
distances it behaves as the normal Green function on the
2D-plane

L 1 L L
G(f1,T2) ~ %log <|f'1_f'2|) for |F; —To| << L.(25)

In terms of spherical harmonics it has the expansion

Yo (£1)Yy,, (F2)
G (i, i) = ’ : : 2
(FuFa) = > Cyl+1 (26)
Using the relation between metric and length fluctuations
given by Eq. 13, this uncertainty relation can be written
in terms of the coefficients, vy, and wugr .,/ , of the decom-
position of du(f) and du(F) in to spherical harmonics,

1 L

;méfﬁ,émm“ (27)

<vEmUZ/m’> =
This relation tells us that much of the power in the fluctu-
ations is contained in the low ¢ modes, and thus appears
on the largest scales, contrary to one’s intuition about
Planckian effects.

Our result implies a fundamental uncertainty relation
between the longitudinal spacetime components. We
briefly comment on the connection with the work by ’t
Hooft on the gravitational S-matrix. As ’t Hooft showed,
the in-going and out-going radiation at the horizon causes
a spacetime shift due to gravitational shock waves. He



then went on to postulate that there is an inherent uncer-
tainty in the values of the position of the horizon. In fact,
't Hooft’s uncertainty relations described in e.g. [6, 7],
when translated into a correlation function, are identi-
cal in form to our results, except in the normalization.
Due to our assumption of statistical independence and
the resulting accumulation of the spacetime fluctuations,
we find an extra factor L/l, compared to 't Hooft.

Conclusion and Discussion. In this Letter we have
constructed a concrete holographic model of transversally
correlated longitudinal distance fluctuations, due to vac-
uum energy fluctuations of the (holographic) degrees of
freedom associated with a causally connected volume of
spacetime. By assuming that the energy of these fluctua-
tions is of the order 1/L, where L is the length of the in-
terferometer arm, and that number of fluctuating degrees
of freedom is L?/ 1127, we have derived length fluctuations
of size L% ~ I,L. The strong transverse correlation im-
plies that in interferometer experiments the length fluc-
tuations are sufficiently coherent across the light beam,
so that they are in principle observable.

Our results were derived for a simple toy Michelson
interferometer, so the next step is to concretely connect
the result in Eq. 27 to a power spectral density and to
realistic interferometers. The closest experimental set-
up to our toy is the “Holometer” [17], featuring two 1 m
separated Michelson interferometers with 40 m arms; this
experiment is only sensitive to the cross-correlation be-
tween the interferometers, implying a much-suppressed
signal in our model from higher ¢ modes in Eq. 27. Grav-
itational wave interferometers like LIGO and Virgo have
multiple light-crossings; in our model we expect the sig-
nal from each subsequent light-crossing to be statistically
uncorrelated, effectively reducing the signal in Eq. 27 by
a factor of the number of light crossings (as discussed in
Ref. [12]).

If a signal with the characteristic features of our model
is observed it would be a confirmation that our postulates
regarding the theory of quantum gravity in flat spacetime
are realized. Conversely, if no signal is observed in an ap-
propriately sensitive interferometer, it would tell us that
one our proposed postulates does not hold. In either case,
we will have obtained concrete experimental information
about the underlying theory of quantum gravity.

The transversal correlation of our model has important
phenomenological implications. Previous attempts to
consider phenomenological effects from Planckian Brow-

nian noise (see Refs. [13, 18], and as suggested by Eq. 3-5)
were stymied by the blurring of images from distant as-
trophysical sources. If the fluctuations are uncorrelated
in the transverse direction, this implies large deviations
in the phase of the light [14]. In the model under consid-
eration here, however, most of the power in the length
fluctuations is contained in low f-modes, as shown in
Eq. 27, that are coherent across the aperture diameter
D of an optical device, namely those with £ < 2xL/D.
These modes do not affect the quality of the image of
astronomical objects. The image quality is therefore im-
proved compared to previously considered situations. To
fully establish that the transversal correlations are suffi-
cient to evade the astrophysical constraints needs further
study.

On the theoretical side the most important open ques-
tion is the precise nature of the holographic degrees of
freedom that are responsible for the spacetime fluctua-
tions. A possible route to gain more control over the mi-
croscopic theory is to consider an interferometer in Anti-
de Sitter space, and to reformulate the problem in terms
of observables of the dual conformal field theory. The
question is then to isolate the microscopic degrees of free-
dom dual to a small causal diamond deep inside the AdS
geometry. Another promising direction is to relate our
description to the recent works on the BMS-group, soft
gravitons and gravitational memory effects [19, 20]. In
this context one is dealing with coordinate shifts at spa-
tial infinity, or at event horizons of black holes [21]. The
theoretical challenge in this case is to generalize these
studies to finite size causal diamonds, and determine the
fluctuation spectrum of the coordinate shifts. We will
leave these theoretical, as well as the phenomenological,
analyses to future work.
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