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Black hole levitron

Xerxes D. Arsiwalla* and Erik P. Verlinde†

Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
(Received 17 August 2009; published 1 April 2010)

We study the problem of spatially stabilizing four dimensional extremal black holes in background

electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in

external fields we find that taking a continuum limit of Denef et al.’s multicenter supersymmetric black

hole solutions provides a supergravity description of such backgrounds within which a black hole can be

trapped within a confined volume. This construction is realized by solving for a levitating black hole over

a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

DOI: 10.1103/PhysRevD.81.084004 PACS numbers: 04.70.Dy

I. INTRODUCTION

Being inspired by ongoing interest in questions concern-
ing black hole production; in this paper we address the
following curiosity: after detection, how does one stabilize
such a black hole using say external fields? This would in
fact serve as a black hole analog of a particle-trap, or rather
as we shall see below, of a classical levitron. However
unlike familiar subatomic particle traps or even
Millikan’s well-known oil drop experiment [1], including
the effects of general relativity indeed gives rise to inter-
esting modifications of the above stabilization mecha-
nisms, which were based purely on Newtonian gravity.
We shall describe how this idea can in fact be materialized
by writing down solutions for black holes levitating in
external electromagnetic as well as gravitational fields.

For the purpose of this article, we consider four dimen-
sional extremal black hole solutions to minimal N ¼ 2
SUGRA ([2–4]). Furthermore, let us confine these configu-
rations to only include an electric and/or magnetic charge
q, p respectively. These extremal black holes are known to
satisfy the BPS constraint. The most general metric ansatz
consistent with supersymmetry can then be written as

ds2 ¼ � �

Sð ~xÞ ðdtþ!idx
iÞ2 þ Sð ~xÞ

�
dxidxi with

Sð ~xÞ=� ¼ P 2ð ~xÞ þQ2ð ~xÞ and

A ¼ 2�Qð ~xÞðdtþ!idx
iÞ þ�

(1)

is the four dimensional gauge field. P ð ~xÞ, Qð ~xÞ are har-
monic functions associated to charges p and q accordingly.
� is the Dirac part of the vector potential satisfying d� ¼
�dP ð ~xÞ with the Hodge star � defined on R3. For a single
spherically symmetric black hole in vacuum, it holds that
~! ¼ 0. However, for our considerations here, we shall be
looking for solutions when the black hole is placed in
external electric and magnetic fields. There now exists a
nonzero Poynting vector corresponding to a rotating ge-

ometry. We first look for levitating solutions in constant
background fields. It turns out these are inadequate for
stabilization in all three directions. Then we look for
more nontrivial backgrounds, which are obtained by ex-
tracting a continuum limit of Denef et al.’s [2–4] multi-
center supergravity solutions. We find that turning on
dipole fields already achieves the desired result.

II. BLACK HOLE LEVITATION IN CONSTANT
EXTERNAL FIELDS

Given the metric ansatz in Eq. (1), we begin by looking
for stationary solutions of a black hole placed in constant
electric, magnetic and gravitational fields. In order to
achieve this we have to specify explicit harmonic functions
describing this configuration, then compute the off-
diagonal elements ~! and solve the associated integrability
equations. We claim that the desired harmonic functions
describing this configuration are

P ð ~xÞ ¼ uþ p

j ~x� ~lj þ Bz

Qð ~xÞ ¼ vþ q

j ~x� ~lj þ Ez
(2)

where B and E are constant magnetic, respectively, electric
fields oriented along the z-direction and z denotes the

z-coordinate. ~l marks the position of the black hole’s
horizon, which we determine via integrability conditions.
u, v are constants. In principle, we can absorb u and v via a
shift in the z-coordinate. This point will be made clear

when we solve for ~l. The Bz and Ez in Eq. (2) are linear
terms that satisfy Laplace’s equation and can be recognized
as the usual electro/magneto-static potentials associated to
constant fields. Note that extremality implies the above
linear terms also source constant gravitational fields.
A nice way to motivate the expressions for P ð ~xÞ and

Qð ~xÞ is to extract them via a special limit of Denef et al.’s
multicenter solutions [2–4]. More specifically, let us con-
sider the two-center solution. This is a regular BPS solution
of four dimensional N ¼ 2 supergravity. It is stationary
but nonstatic and hence caries an intrinsic angular momen-
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tum. Moreover the black holes comprising this bound state
possess mutually nonlocal charges. Let us denote the cor-

responding two charge vectors as � ¼ ðp; qÞ and ~� ¼
ð~p; ~qÞ. The idea is now to carry the charge ~� all the way
to infinity while scaling ð~p; ~qÞ and the radial coordinate of
the charges in such a way that the magnitudes of the
electric/magnetic fields themselves are held fixed.
Applying this limit to the expressions for electro/mag-
neto-static fields of point charges indeed leaves us with
constant fields oriented opposite to the direction of the

source charges ~�. Without loss of generality, the z-axis
can then be chosen to point in the direction of the sources.
Integrating these fields along the line element, precisely
yields the linear potential terms in Eq. (2).

In fact we may also use this limiting two-center system
to captures other features of our original configuration of a
black hole in constant external fields. Following [2–4], we
can determine the off-diagonal terms in the metric using

r� ~! ¼ P ð ~xÞrQð ~xÞ �Qð ~xÞrP ð ~xÞ: (3)

Below we shall solve ~! for a class of nonstatic solutions.
Furthermore operating the gradient on both sides of Eq. (3)
leads to the following integrability equation

P ð ~xÞr2Qð ~xÞ �Qð ~xÞr2P ð ~xÞ ¼ 0 (4)

which we evaluate at ~x ¼ ~l to get

l ¼ qu� pv

pE� qB
: (5)

This gives us the position of the black hole. Here ~l ¼
ð0; 0; lÞ can be chosen on grounds of symmetry. One can
also perform a shift of coordinates, so as to place the black
hole at the origin. This can be achieved by setting constants
u ¼ v ¼ 0. Note however that ðpE� qBÞ � 0 is required
in order to preserve mutual nonlocality.

Equation (3) can be conveniently solved using spherical
coordinates ðr; �;�Þ. And that leads to a system of coupled
differential equations

ðr � ~!Þr ¼ 2 cos�ðpE� qBÞ
r

ðr � ~!Þ� ¼ � sin�ðpE� qBÞ
r

(6)

while ðr � ~!Þ� ¼ 0 due to �-independence on the right-

hand side. Our objective is now to seek out a nontrivial
solution which confers to the description of a black hole
rotating in the presence of external electromagnetic fields.
We find that there exists such a simple solution with
azimuthal symmetry

!� ¼ sin�ðpE� qBÞ (7)

while !r ¼ !� ¼ 0. For completeness let us also mention
that the solution presented in Eq. (7) is certainly not the
most general. For instance, we also find that solutions with

harmonic variations such as @!�

@� ¼ cos� also exist and very

likely one may well find a more general class of these. But
we shall not require that for our purposes.
The solution above allows us to levitate a black hole at a

fixed height on the xy-plane owing to the balancing act
between gravitational attraction and electro/magneto-static
repulsion. However it is not stable in all three directions
and can move about the surface of the plane. To localize the
black hole in all three directions we need a more compli-
cated background field where the black hole can be held at
a local minimum of an effective potential. This we do in the
next few sections.

III. CONTINUUM LIMIT OF MULTICENTER
SOLUTIONS

In this section we start looking for extremal stationary
solutions to Einstein-Maxwell gravity that admit back-
grounds with multipole electromagnetic fields. As before,
we work with four dimensional gravity with just one gauge
field. Generalizations to n� 1 vector fields or inclusion of
other charges such as D0 and/or D6 in Type II A are rather
straightforward. Let us now see how taking a continuum
limit of Denef et al.’s multicenter solutions yields the
desired backgrounds. In order to write down harmonic
functions for such a smeared distribution of black holes,
we define density functions �eð ~x0Þ, �mð ~x0Þ viaZ

V
�eð ~x0Þd�0 ¼ Q and

Z
V
�mð ~x0Þd�0 ¼ P; (8)

where d�0 is a volume element within a compact support V,
that covers the distribution. In the continuum limit, har-
monic functions for multiple black holes take the form

Qð ~xÞ ¼ vþ
Z
V

�eð ~x0Þ
j ~x� ~x0jd�

0

P ð ~xÞ ¼ uþ
Z
V

�mð ~x0Þ
j ~x� ~x0j d�

0:

(9)

To these harmonics one may also add linear terms Ez and
Bz corresponding to constant fields, whenever required.
From a computational point of view, the real utility of the
above-mentioned smeared distributions shows up in their
respective multipole expansions. Expressing this in the
regime that j ~xj � j ~x0j holds, we have

Qð ~xÞ ¼ vþ Q

j ~xj þ
xi�

i
e

j ~xj3 þ 1

2

xixjT
ij
e

j ~xj5 þ � � � � � �

P ð ~xÞ ¼ uþ P

j ~xj þ
xi�

i
m

j ~xj3 þ 1

2

xixjT
ij
m

j ~xj5 þ � � � � � � ;
(10)

where Q, P are electric, respectively, magnetic monopole
moments; �e, �m are electric and magnetic dipole mo-
ment vectors; and Te, Tm are, respectively, electric and
magnetic quadrupole moment tensors—all defined in the
usual way. We employ boldface characters to denote vec-
tors as well as tensors. The ‘‘� � � � � �’’ in Eq. (10) denote
terms with higher order moments. When j ~xj � j ~x0j, the
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series is convergent and these functions can be used to
describe supergravity solutions associated to any specific
multimoment source, provided all lower moments vanish
for that distribution. As an illustrative example, we analyze
the solution for a charge distribution with dipole order
corrections.

First let us check that the functions in Eq. (9) yield
meaningful expressions for continuum black hole configu-
rations. Evaluating Eq. (4) for these harmonics gives

�eð ~xÞP ð ~xÞ � �mð ~xÞQð ~xÞ ¼ 0: (11)

Outside the support V, this expression vanishes identically;
whereas points within the support region ought to satisfy

u�eð ~xÞ þ �eð ~xÞ
Z
V

�mð ~x0Þ
j ~x� ~x0j d�

0 � v�mð ~xÞ

� �mð ~xÞ
Z
V

�eð ~x0Þ
j ~x� ~x0jd�

0 ¼ 0: (12)

After performing the relevant integrals, the above expres-
sion can be evaluated for all points ~x 2 V, and that defines
the locus of solutions for the black hole distribution. In
following sections, we will solve this condition for specific
distribution functions. At the moment though, as a consis-
tency check, let us confirm that, analogous to any multi-
center configuration, asymptotically the above continuum
configurations also behave like a single-center black hole
with total charge P andQ. This can be done by seeing how
the constants u and v (which themselves are asymptoti-
cally defined) relate to the total monopole chargesQ andP,
and if this relation is the same as that obtained for a single-
center black hole with the same monopole charges. In order
to do this we simply integrate both sides of Eq. (12) over all
~x 2 V. This yields

uQ� vP ¼ 0 (13)

which is precisely what one obtains for a single-center
solution with charges Q and P; thereby confirming the
asymptotic dependence of u and v for an arbitrary contin-
uum configuration having fixed total (monopole) charges
Q and P.

Having checked consistency of integrability conditions,
we next compute the off-diagonal elements ~! in the metric
via

r� ~! ¼ �P ð ~xÞEð ~xÞ þQð ~xÞBð ~xÞ (14)

where Eð ~xÞ and Bð ~xÞ refer to exact electric and magnetic
fields corresponding to distributions �eð ~xÞ and �mð ~xÞ re-
spectively. In this sense the continuum limit described here
is much simpler than a finite N many body black hole
system for which integrability equations turn out to be
quite hard to solve in full generality.

For our objectives, it will suffice to solve Eq. (14) using
its multipole expansion. As an illustration, we consider a
smeared distribution where the monopole contributions to
~! get magnetic dipole corrections coming from�m, which

is aligned along the z-axis. In spherical coordinates,
Eq. (14) takes the form

ðr � ~!Þr ¼ 2v�m cos�

r3
þQ�m cos�

r4

ðr � ~!Þ� ¼ v�m sin�

r3
þQ�m sin�

r4

(15)

while ðr � ~!Þ� ¼ 0 due to symmetry in the �-direction.

Note that while writing down Eq. (15), we make use of the
integrability constraint Eq. (13) (inserting it into Eq. (14)).
As before, we seek solutions characterized by azimuthal
symmetry. The ensuing result is

!� ¼ v�m sin�

r2
þQ�m sin�

2r3
(16)

and !r ¼ !� ¼ 0. At large distances away from the
smeared sources, Eq. (16) gives dipole corrections to lead-
ing order contributions in the metric. In fact these consti-
tute subleading contributions to the geometry. It is these
multipole corrections that distinguish a true one-centered
black hole from a multicenter distribution of black holes,
when viewed at asymptotic infinity. For a pure one-center
solution, ~! identically vanishes. While for the multicenter
case, it is nontrivial but quite difficult to compute for any
given discrete configuration. The continuum limit, on the
other hand, facilitates viable computations, at least order
by order in a multipole series expansion.

IV. TOWARDS A BLACK HOLE LEVITRON

We are now ready to combine results of the last two
sections to construct stable levitating black hole solutions
and realize a Levitron-like construction. We perturb the
constant background fields of Sec. II with a magnetic
dipole field and over this perturbed background solve for
a black hole held at a fixed height. The dipole fields are
produced by the smeared distribution discussed in Sec. III.
For simplicity we consider a black hole with only electric
charge q (a dyonic generalization is also straightforward).
This construction is captured by the following harmonics

Qð ~xÞ ¼ vþ q

j ~x� ~lj þ Ez

P ð ~xÞ ¼ uþ�m cos�

j ~xj2 þ Bz:
(17)

The dipole moment is aligned parallel to the z-axis and
carries a magnitude �m. While � is a coordinate denoting
the angle that the position vector ~x makes with the z-axis.
Below we shall see, how solving integrability conditions

for these harmonics constrains allowed solutions for j~lj and
�, where a black hole with charge q is held stable in the
vicinity of a continuum distribution with dipole charge�m.
For the rest of the computation however, it will suffice to

turn off the constant fields E andB. This is because a dipole
background will turn out to be sufficient hold the black
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hole at a fixed height and keep it stable in all three
directions. Superposing constant fields do not affect stabil-
ity of the solution but ultimately we will need the constant
fields for giving an interpretation of black hole levitation in
a constant gravitational field (as would be the case if we
were ever to trap a small black hole in a laboratory some-
where on Earth).

Continuing with the calculation, the position of the black

hole ~l is determined by evaluating Eq. (4) at the location of

the pole ~x ¼ ~l using harmonics in Eq. (17) with E ¼ B ¼
0. This gives

j~lj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��m cos�

u

s
(18)

This gives us a locus of solutions j~lj, � for the black hole
configuration described in Eq. (17) (with E ¼ B ¼ 0).
Before discussing further reality constraints on these solu-
tions, let us also evaluate the integrability equation at the
other pole ~x ¼ 0. This then determines the constant v as

v ¼ � q

j~lj (19)

Note that physical solutions only exist lð� j~ljÞ real and
non-negative and this restricts the values that the angle �
can assume. For instance, let us first consider the case when
u > 0. Then � can attain values only from 0 to �

2 provided

the dipole is directed along the negative z-axis, while the�
coordinate remains unconstrained. On the other hand, for a
dipole pointing in the positive z-direction, the angle � can
only span the range �

2 to � (as shown in Fig. 1). In the other

case, when u < 0, then the signs appropriately reverse,
namely, when the dipole is directed along the negative
z-axis, then � goes from �

2 to �; whereas with a dipole

along the positive z-orientation, � spans values from 0 to �
2 .

The solution space of the black hole is now confined to a
restricted parameter space. More precisely these are circu-
lar orbits corresponding to given values of � on an equi-
potential surface of a dipole field. And in turn each orbit
refers to a solution with a specified radial distance l. We
plot the solution space for physical values of ðl; �;�Þ in
Fig. 1. The dipole surface in the figure represents locations
where a single black hole with a point charge can be
stabilized in the gravitational and magnetic field of a con-
tinuum black hole distribution centered around the origin
and carrying a magnetic dipole moment.
In Fig. 1, we have plotted Eq. (18). At � ¼ 0 the black

hole sits at a fixed height on the z-axis; at � ¼ �
2 it falls into

the origin; while the case 0< �< �
2 corresponds to the

black hole being located anywhere on a circular orbit
centered at height l cos� and having radius l sin�.
Solutions on the positive z-axis correspond to the case
when �m < 0 (for u > 0), while those on the negative
axis refer to �m > 0. For each value of � in Eq. (18) there
exists a solution for ~!. At � ¼ 0 the solution space is just a
single point and that is when the black hole achieves
stability in all three directions at a fixed height on the
z-axis.
For completeness we first compute ~! when the black

hole is still sitting at the origin, that is when ~l ¼ 0. After
that we shall determine the modification in ~! required to
achieve stable levitation at a fixed height on the z-axis. In

fact the solution at ~l ¼ 0. can simply be borrowed from our
calculation in Eq. (16) once we make the substitutions
Q ! q and P ! 0.
On the other hand, when the black hole is made to

levitate at a fixed height l on the z-axis we have to solve
the following system of equations

ðr � ~!Þr ¼ � quðr� l cos�Þ
ðr2 þ l2 � 2rl cos�Þ3=2 �

2q�m cos�

lr3

� q�m cos�ðr� l cos�Þ
r2ðr2 þ l2 � 2rl cos�Þ3=2

þ 2q�m cos�

r3ðr2 þ l2 � 2rl cos�Þ1=2

ðr � ~!Þ� ¼ � qul sin�

ðr2 þ l2 � 2rl cos�Þ3=2 �
q�m sin�

lr3

� ql�m sin� cos�

r2ðr2 þ l2 � 2rl cos�Þ3=2

þ q�m sin�

r3ðr2 þ l2 � 2rl cos�Þ1=2 (20)

and again ðr � ~!Þ� ¼ 0. Also ~l ¼ ð0; 0; lÞ. This now be-

comes fairly more complicated compared to the non-

FIG. 1 (color online). Here we make a 3D plot of Eq. (18) for

the solution space of ~l for positive as well as negative dipole
orientations. Points on the upper globular surface correspond to
ðl; �; �Þ for �m < 0 and u > 0. Points on the lower globular
surface correspond to those with �m > 0 when u > 0.
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levitating case. The modification in the metric reflects a
modification to the geometry of the system. If we restrict to
azimuthally symmetric cases, we find that Eq. (20) has a
solution only for small heights of levitation, that is when
l � r. This can be understood in the following way. In this
setup the system consists of the black hole plus the source
of the dipole field. Let us call the latter the base. The
levitating we are looking for requires that the base be rigid
against the gravitational pull of the black hole, that is the
center of mass of the whole system be as close to the base
as possible. For very large charges, corresponding to large
values of l, a stable symmetric levitating solution does not
seem to exist (we see this from numerical checks). In that
case more complicated nonsymmetric solutions may be
sought for, but we would hardly call those levitating.

Narrowing down to our regime of interest, we expand
around l � r and solve Eq. (20) order by order in l.
Truncating up to second order terms we get

!� ¼ �quð1� cos�Þ
r sin�

� q�m sin�

lr2
þ q�m sin�

2r3

�
�
qu sin�

r2

�
� lþ

�
� 3qu cos� sin�

2r3

� q�mð1þ 3cos2�Þ sin�
8r5

�
� l2 þOðl3Þ (21)

while !r ¼ !� ¼ 0. This solution enables us to write
down the full metric for a stationary system of a black
hole levitating in equilibrium above a magnetic dipole
field. Also this calculation easily extends to the case of a
dyonic black hole.

Comparison to a levitron

We now compare the levitation of black holes discussed
above with that of a levitron [5]. The latter is a spin
stabilized magnetic levitation device first invented by
Roy Harrigan [6]. It basically consists of a permanent
base magnet above which a spinning top with a magnetic
dipole moment levitates midair and is stable in all three
directions. This gives rise to an apparent paradox due to
Earnshaw’s theorem [7] which states that no stationary
configuration composed of electric/magnetic charges and
masses can be held in stable equilibrium purely by static
forces. And the reason for this is simply that all static
potentials satisfy Laplace’s equation whose solutions
only exhibit saddles at critical points : there are neither
any maxima nor minima. It was Sir Michael Berry’s [8]
(see also [9]) remarkable insight invoking adiabatic aver-
aging that helped resolve the apparent paradox. He showed
that a slow precession mode (when averaged over the fast
rotation mode) was responsible for creating an effective
stationary potential with a stable minimum. This is the
same principle used in neutron traps as well as other
particles carrying magnetic dipole moment.

A natural question which arises is whether our black
hole construction also mimics the physics of the levitron
and how it overcomes Earnshaw’s theorem. The latter it
already seems to evade since it is based on Einstein’s
gravity rather than Newton’s. However the gravitational
interpretation of our Black Hole levitron’s balancing
mechanism admittedly requires further investigation.
Nevertheless a naive classical intuition can be obtained
from the fact that a nonvanishing Poynting vector gives rise
to a rotating black hole geometry and in turn a rotating
electric distribution induces a magnetic field that repels the
base magnet. It is the ~! in the metric that is responsible for
inducing this balancing force. On the other hand the gauge
theoretic interpretation of this multicenter balancing has
been better understood in terms of Denef’s quiver quantum
mechanics [10] wherein the distance between centers is
determined via an effective potential whose minima deter-

mine the stability loci ~l.

V. CONCLUSIONS AND DISCUSSION

As has been extensively discussed in the literature, a
very important application of supersymmetric multicenter
black hole solutions is for the problem of microstate count-
ing [11]. However even for the simplest configurations
with more than two centers, solving integrability con-
straints to determine the full metric becomes a highly
formidable task. Our initial motivation for this work was
to investigate whether analytic results could still be found
in some interesting limiting cases of these geometries.
Indeed we find that such a limit exists in the form of a
large n number of centers. In this work we have con-
structed a continuum distribution of black holes and solved
integrability conditions towards obtaining the metric.
Upon this continuum system we have performed a multi-
pole expansion to find smeared black hole geometries with
multipole moments.
As a fun application of these continuum solutions, we

use these to address the problem of black hole stabilization
in external fields. For this we construct a levitating black
hole solution. This black hole levitron stabilizes a test
extremal black hole at a fixed location in the electromag-
netic and gravitational field produced by the continuous
distribution. Our solution is inclusive of the black hole’s
backreaction on the continuous distribution. In this work
we started off by using Denef et al.’s multicenter super-
symmetric solutions, which by themselves are stable, sta-
tionary BPS solutions with nonlocal charges. Our
harmonic functions and integrability conditions can all be
retrieved as special limits of the discrete multicenter case.
Therefore our levitating solutions also describe stable,
stationary supersymmetric configurations. This black
hole construction very much resembles a mechanical levi-
tron, though it is different in that it includes general rela-
tivistic considerations, but on the other hand, it is also
restricted to stationary solutions. For a more general class
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of time-dependent, precessing multiblack hole solutions
(when posterity finally discovers these), it would be an
interesting problem to give a proof of the general relativ-
istic analog of Berry’s stabilization mechanism. It would
also be of practical relevance to construct solutions for
nonextremal black hole levitrons.

Other interesting directions might be investigating fur-
ther applications of the continuum limit of multicenter
black hole solutions. Compared to discrete-centered con-
figurations, the smeared distribution lends itself to more
viable computations. One may ask what role these distri-

butions play in microstate counting of black hole
geometries.
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