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We consider the uncertainty in the arm length of an interferometer due to metric fluctuations from the 
quantum nature of gravity, proposing a concrete microscopic model of energy fluctuations in holographic 
degrees of freedom on the surface bounding a causally connected region of spacetime. In our model, 
fluctuations longitudinal to the beam direction accumulate in the infrared and feature strong long 
distance correlation in the transverse direction. This leads to a signal that could be observed in a 
gravitational wave interferometer. We connect the positional uncertainty principle arising from our 
calculations to the ’t Hooft gravitational S-matrix.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The quantum mechanical description of gravity together with 
the other forces remains one of the most important questions in 
physics. While general relativity can be quantized as an effective 
field theory valid at low energies, and there has been significant 
theoretical progress in understanding other aspects of quantum 
gravity, signatures of the quantum nature of gravity have so far 
remained stubbornly immune to observation.

An important clue towards the ultimate theory of quantum 
gravity is provided by the holographic principle [1,2]. One of its 
implications is the covariant entropy bound [3], which states that 
the entropy associated to region bounded by null geodesics does 
not exceed A/4G N , where A denotes the area of the surface and 
Newton’s constant is identified with the square of the Planck 
length via 8πG N ≡ l2p , with lp � 10−35 m. The holographic prin-
ciple suggests that the total number of microscopic degrees of 
freedom associated to a given region of space (defined by the max-
imal entropy) is given by the area of the surrounding surface in 
Planck units. In this form the holographic principle is known to 
be realized in spacetimes with negative cosmological constant [4], 
and is firmly incorporated in the framework of the AdS/CFT corre-
spondence [5].

Motivated by the holographic principle, one is tempted to pos-
tulate that the microscopic spacetime degrees of freedom, also in 
flat spacetime, can be identified with Planck size pixels on the sur-
face bounding a causally connected part of space. The spacetime 
volume would then emerge in the infrared from these holographic 
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spacetime quanta. One of the intriguing aspects of the holographic 
principle is that, to ensure the validity of the entropy bound, the 
spacetime degrees of freedom are necessarily correlated in the in-
frared. This raises the question of whether Planck scale physics 
could appear at much longer, potentially observable, length scales.

Our goal in this Letter is to investigate whether fluctuations 
due to the graininess of spacetime can potentially lead to ob-
servable signatures. Normal intuition would say that, since the 
natural length and time scale associated with the quantum na-
ture of spacetime is Planckian, that no feasible experiment exists 
that could measure its effects. We will argue, however, that when 
combined with important infrared effects naturally expected from 
holography, the accumulative effect of Planck scale fluctuations can 
be transmuted to observable time and length scales. Because of 
their sensitivity to exquisitely short distance scales, gravitational 
wave interferometers are an ideal testing ground for these ideas.

We will identify the required theoretical conditions that need 
to be satisfied to obtain observable effects, and construct a con-
crete holographic model that obeys those conditions. After show-
ing that uncorrelated Planckian fluctuations are not macroscopi-
cally observable, we demonstrate that fluctuations with sufficient 
transverse correlations in the infrared do lead to observable effects. 
The appearance of transverse correlations is crucial and suggests a 
holographic description in which the longitudinal and transverse 
behavior of the spacetime degrees of freedom are treated on a dif-
ferent footing.

We will build an explicit holographic model in terms of Planck-
size pixels that saturate the holographic bound and have energy 
fluctuations that cause the spatial length L of a causally connected 
region of space to fluctuate. The transverse correlations are gener-
ated through the Newtonian potential of these energy fluctuations, 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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allowing us to make a concrete prediction for the spectrum of 
length fluctuations in an interferometer. These fluctuations imply a 
spacetime uncertainty relation in the longitudinal direction, which 
we connect, albeit in a modified form, to the gravitational S-matrix 
approach of ’t Hooft (see Refs. [6,7]).

While there have been several previous studies seeking to 
heuristically connect holography to interferometry (e.g. [8–12]), 
our theoretical description is structurally unique in its holographic 
set-up. And although the first steps we take–employing a Planck-
ian random walk–shares commonalities with these works, our ap-
proach differs in the sense that we present a concrete theoretical 
model leading to length fluctuations along the longitudinal direc-
tion with a distinctive signature for strong transverse correlations, 
which is, as a consequence, macroscopically observable in an in-
terferometer. A phenomenological result is that constraints from 
the images of distant astrophysical sources derived for uncorre-
lated fluctuations in Refs. [13,14] do not apply to our model.

2. Length fluctuations with Planckian white noise

In this paper we consider a toy experimental set-up, shown in 
Fig. 1, in which the arm length L of an interferometer is measured 
after a single light crossing. In this idealized scenario the length 
fluctuations δL due to quantum fluctuations in the metric are given
by

δL(t) = 1

2

L∫
0

dz h(t + z − L) (1)

where h ≡ hzz is the metric component along the light beam prop-
agation (see e.g. [15]). The magnitude of these length fluctuations 
is normally expressed in terms of the power spectral density (PSD)

S(ω, t) =
∞∫

−∞
dτ

〈
δL(t)

L

δL(t − τ )

L

〉
e−iωτ . (2)

Let us first consider a simple model with a white noise signal of 
Planckian amplitude

〈
h(t + z1 − L)h(t + z2 − L − τ )

〉 = Clpδ(τ + z1 − z2), (3)

where lp = √
8πG N . This leads to a PSD of the form

S(ω) = Clp

4

sin2 ωL

ω2L2
. (4)

In this simple model the length fluctuations 〈δL2〉 obey

〈
δL2(t)

L2

〉
= 1

2π

∞∫
−∞

dω S(ω) = Clp

8L
, (5)

and thus grow linearly with L [8–12]. This signal could in princi-
ple be observable, since the peak sensitivity for gravitational wave 
interferometers is right around the Planck scale: S(ω, t) � lp . Over 
the next sections our goal will be to show how some of the generic 
behavior in Eqs. (4), (5) can arise from a holographic model, moti-
vating the size of the constant C , with crucial observational effects 
arising from angular correlations. In addition, in experiments like 
LIGO and Virgo a typical photon traverses the interferometer arm 
multiple times before being measured. In this paper we continue 
to focus on our simple set up and defer the detailed discussion of 
multiple crossings to future work.
2

3. Holographic scenario and basic postulates

Our aim in the following is to derive a result similar to Eq. (5)
from a holographic scenario, in which the holographic surface is 
fixed by the light path of a photon, as depicted in Fig. 1. In order to 
clearly delineate between theoretical input and observational con-
sequences, we will state here our basic postulates:

1. Holographic principle in flat spacetime. We postulate that the 
holographic principle also applies to Minkowski spacetime. It 
states that the maximal entropy carried by the microscopic de-
grees of freedom associated with a finite region of flat space-
time bounded by null geodesics is S = A/4G N . This bound is 
saturated for a region of space whose null boundary coincides 
with a horizon.

2. Universality of metric fluctuations at horizons. We postulate, as 
a corollary of the first postulate, that metric fluctuations near 
null surfaces associated with the boundary of a finite region 
follow from the entropy and temperature using standard ther-
modynamic considerations. This postulate implies that metric 
fluctuations near a Rindler-type horizon are identical to those 
near a black hole horizon with the same temperature and en-
tropy.

Note that we are treating the metric fluctuations at the holo-
graphic surface separating the inside of the causal diamond from 
the outside as if it were a black hole horizon (see Ref. [16]), even 
though we are considering the vacuum of Minkowski space. The 
basic reason we believe these are reasonable postulates is that a 
finite causal diamond in Minkowski space, when suitably foliated, 
can be recast in the metric of a so-called topological black hole 
[17]. Furthermore, a conformal field theory restricted to the dia-
mond behaves as a thermal field theory [17], and the quantized 
Einstein-Hilbert metric in the infrared behaves as a conformal field 
theory. In related work [18], we show that these postulates are 
justified in the context of AdS/CFT. That they hold for the Einstein-
Hilbert metric in Minkowski space must, at the present time, be 
ultimately verified by experiment. Fortunately, we show that the 
experimental signatures associated with a spacetime obeying these 
postulates are within reach with current interferometer technol-
ogy.

4. Towards macroscopic effects in interferometers

The results in Eqs. (3)-(5), that were derived from the sim-
ple 1D-model, are by themselves not sufficient to show an effect. 
In order to be observable in a realistic experimental set up, the 
fluctuations must be coherent at macroscopic spacetime distances. 
To examine the conditions under which such coherent fluctua-
tions occur, we extend our model by including the two spatial 
directions transverse to the beam direction. Anticipating our holo-
graphic description, we consider metric fluctuations that depend 
on only three coordinates, one longitudinal null direction and two 
transversal directions, corresponding to the outside boundary of 
the causal diamond in Fig. 1,

〈(
δL

L

)
1

(
δL

L

)
2

〉
= 1

16L2

L∫
−L

L∫
−L

du1du2 (6)

∫
d3k1

(2π)3

d3k2

(2π)3
〈h(k1)h(k2)〉eik1·x1 eik2·x2 .

We first consider an Ansatz corresponding to uncorrelated white 
noise in those three dimensions:



E.P. Verlinde and K.M. Zurek Physics Letters B 822 (2021) 136663
Fig. 1. The interferometer together with the spacetime diagram for a single cross-
ing of a photon in the signal beam. The interferometer at time t is contained in a 
causal diamond centered at the beam splitter and with the photon path on its null 
boundary.

〈
h(k1)h(k2)

〉 = (2π)3δ3(k1 + k2)Cl3p . (7)

This power spectrum implements the principle of statistical in-
dependence both in the longitudinal as well as the transversal 
directions. This can be seen directly by computing the PSD and 
RMS length fluctuations:〈(

δL

L

)
1

(
δL

L

)
2

〉
= Clp

16π L

1

(�x2
T /l2p + 1)3/2

. (8)

In the limit �xT → 0, we recover a signal of an amplitude that 
is in principle within the observable range and is consistent with 
Eqs. (4)-(5). However, for a realistic macroscopic interferometer, 
with the beam size centimeters across such that �xT /lp 
 1, this 
signature would be unobservable.

Let us consider an alternative Ansatz for the metric fluctuations 
in which the transversal directions are treated differently:

〈
h(k1)h(k2)

〉 = (2π)3δ3(k1 + k2)
Clp

(k2
T + k2

I R)
, (9)

where kI R acts as a regulator. Then Eq. (8), in the limit that 
kIR�xT � 1, becomes〈(

δL

L

)
1

(
δL

L

)
2

〉
∼ Clp

16π L
log [1/�xT kI R ] . (10)

Already this result shows important features that the underly-
ing theory must give, notably that the longitudinal and transverse 
directions appear on a different footing. The metric fluctuation in 
the transverse direction must be correlated, while the metric fluc-
tuations in the longitudinal direction accumulate, as in a random 
3

walk, and are transmuted to a low-energy, long-distance signature. 
We will show over the next sections how these features arise nat-
urally from energy fluctuations on a holographic surface.

5. From Minkowski to Schwarzschild-like metric

The central part of our argument involves utilizing a correspon-
dence between any horizon and a black hole horizon. To show 
concretely how this applies to the case at hand, we make two 
metric transformations, which are described below. First we de-
fine light cone coordinates u = r + t and v = r − t so that metric 
becomes

ds2 = dudv + dy2 + huudu2 + hv vdv2 + . . . (11)

where the dots denote the angular components. In this metric the 
light paths on the lower and upper half of the causal diamond 
shown in Fig. 1 are given by

v = L + δv(u) and u = L + δu(v)

The total length fluctuation δL can be expressed as

δL = (δv(L) + δu(L)) /2.

It turns out that only one metric component contributes to the 
time delay along each light path. As we will show in a companion 
paper, the values for δv(L) and δu(L) can be expressed in terms of 
the metric fluctuations via

δv(L) =
L∫

−L

du huu(u, L) (12)

δu(L) =
L∫

−L

dv hv v(L, v).

As a next step, to employ our postulates, we recast the metric in 
the Schwarzschild-like form

ds2 = − f (R)dT 2 + dR2

f (R)
+ r2(dθ2 + sin2 θdφ2), (13)

in such a way that the light paths of the photon are mapped onto 
the event horizon located at f (R) = 0. This is achieved by making 
the coordinate transformation

(u − L)(v − L) = 4L2 f (R), log
u − L

v − L
= T

L
(14)

where the function f (R) is given by

f (R) = 1 − R

L
+ 2	. (15)

Here 	 plays the role of the Newtonian potential and parametrizes 
the deviations in the geometry due to vacuum fluctuations in the 
energy conjugate to the time T .

Without any quantum gravity effects, the horizon is located at 
R = L. In general, its location is determined by f (R) = 0. This leads 
to the following relationship between the product of the lightcone 
time variations δu(L) and δv(L) and the value of Newton’s poten-
tial

δv(L)δu(L)

L2
= 2	(L). (16)

This equation should be regarded as an operator identity. Since 
〈	〉 = 0 in vacuum, the right-hand-side of this equation actually 
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represents a fluctuation around the vacuum, whose amplitude is 
given by squaring the operators and taking its expectation value:〈(

δv(L)δu(L)

L2

)2
〉

=
〈
4	(L)2

〉
. (17)

For a more detailed and formal discussion of this point in the con-
text of AdS/CFT, we encourage the reader to consult Sec IV of our 
companion paper Ref. [18].

The goal of the next section is to determine the root-mean-
square value of the fluctuations in 	 in an ensemble averaged over 
many interferometer light crossings.

6. Holographic model for spacetime fluctuations

We are now ready to employ all of our postulates together to 
compute the deviations in the Newtonian potential, Eq. (16). The 
fluctuations in 	(L) will be induced by vacuum fluctuations in the 
energy conjugate to the time coordinate T . Eq. (16). In the follow-
ing analysis we follow closely the reasoning of Marolf in Ref. [16]
for the quantum thickness of black hole horizons. Directly apply-
ing the holographic principle to the horizon of the causal diamond 
gives

Shor = A

4G N
= 8π2L2

l2p
. (18)

Now the fluctuations in the Newtonian potential on the horizon 
obey

2	(L) = − l2p�M

4π L
, (19)

where �M represents the energy fluctuations in the holographic 
degrees of freedom. Heuristically, one expects the RMS value of 
�M to scale as the square root of the number of pixels on the 
horizon, times the typical energy of the fluctuation, which is given 
by the Hawking temperature.

One of the standard methods to determine the Hawking tem-
perature is to go to Euclidean time and impose that the resulting 
metric is free from conical singularities. In this way one finds

Thor = | f ′(L)|
4π

= 1

4π L
. (20)

In the present situation the temperature Thor is measured by an 
accelerated observer whose event horizon coincides with the pho-
ton trajectory and whose own trajectory passes through the origin 
at T = 0. This observer stays at R = 0 and has T as proper time 
coordinate.

We now calculate the RMS value of the fluctuations, by assum-
ing that the vacuum energy E vanishes. This implies that the free 
energy F (β) equals

F (β) = −Thor Shor = − β

2l2p
(21)

where in the last step we eliminated the length L in favor of the 
inverse temperature β = 1/Thor = 4π L. In the canonical ensem-
ble the mass fluctuations �M are obtained by taking the second 
derivative of the free energy. One thus obtains

〈�M2〉 = − ∂2

∂β2 (β F ) = 1

l2p
. (22)

Note that �M ∼ Thor
√

Shor , as expected from the heuristic argu-
ment. We now assume that at a coincident point, δv(L) and δu(L)
4

take the same value δL. In this situation, combining Eqs. (16)-(22), 
we learn that the amplitude of the length fluctuation is〈
δL2

L2

〉
= l2p�M

4π L
= lp

4π L
, (23)

where here �M = √〈�M2〉 is interpreted as the root-mean-square 
of the mass fluctuation. Note this has precisely the behavior shown 
in Eq. (5) needed to be observable, where now we can fix the con-
stant C via the holographic principle. We will propose in the next 
section that angular correlations between the interferometer arms 
respect the spherical symmetry of the measuring apparatus, and 
would give rise to a distinctive experimental signature.

7. Angular correlations and ’t Hooft’s S-matrix

We have considered so far the amplitude of the fluctuations 
only as a function of the longitudinal coordinates. Physically it is 
clear that the fluctuations will also have an angular dependence, 
which can be straightforwardly determined for an interferometer 
with two arms of equal length L. In this case, a spherical coordi-
nate system, with origin at the beamsplitter, is appropriate, with 
the far mirrors located at two positions r̃1, r̃2 on the sphere. In 
this experimental configuration, the angular information can be 
determined with the help of the Newtonian potential 	 decom-
posed in terms of spherical harmonics, thus respecting the spheri-
cal symmetry of the measuring apparatus.

Accordingly, we propose the following natural Ansatz as a gen-
eralization of Eq. (23):〈
δL(r̃1)δL(r̃2)

〉
= lp L

4π
G(r̃1, r̃2). (24)

This equation can be further justified from a generalization of 
Eq. (17) to give the four-point correlation at separated points:

〈
δu(r̃1)δv(r̃1)δu(r̃2)δv(r̃2)

〉
= l2p L2

16π2
G2(r̃1, r̃2). (25)

If we again assume as above that at a coincident point δu(r̃) =
δv(r̃) = δL(r̃), the two-point Eq. (24) is seen to be the factorization 
of Eq. (25) into the product of two two-point functions.

Our suggestion, based on the symmetries of the system, is to 
identify the function G(r̃1, ̃r2) with the Green function of a modi-
fied Laplacian on the sphere. It obeys(

−∇2
r̃1

+ 1

L2

)
G(r̃1, r̃2) = δ(2)(r̃1, r̃2), (26)

and can be obtained by integrating the 3D Green function along 
the radial direction corresponding to the beam. At short distances 
it behaves as the normal Green function on the 2D-plane

G(r̃1, r̃2) ∼ 1

2π
log

(
L

|r̃1 − r̃2|
)

for |r̃1 − r̃2| << L. (27)

In terms of spherical harmonics it has the expansion

G(r̃1, r̃2) =
∑
�,m

Y�,m(r̃1)Y ∗
�,m(r̃2)

�2 + � + 1
.. (28)

We can write this result alternatively in terms of the coefficients, 
δL�m and δ�′m′ , of the decomposition of δL(r̃) and δL(r̃) in to 
spherical harmonics as

〈
δL�mδL�′m′

〉 = 1

4π

lp L

�2 + � + 1
δ��′δmm′ . (29)

This relation tells us that much of the power in the fluctuations 
is contained in the low � modes, and thus appears on the largest
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scales, contrary to one’s intuition about Planckian effects. While we 
think that our Ansatz of fluctuations obeying the Green function 
on the 2-d sphere is natural given the symmetries of the system, 
we have not rigorously derived this result here; we leave more 
detailed work in this direction for the future.

Our result implies a fundamental uncertainty relation between 
the longitudinal spacetime components. As ’t Hooft showed, the 
in-going and out-going radiation at the horizon causes a space-
time shift due to gravitational shock waves. He then went on to 
postulate that there is an inherent uncertainty in the values of 
the position of the horizon. In fact, ’t Hooft’s uncertainty relations 
described in e.g. [6,7], when translated into a correlation func-
tion, have an identical angular dependence as Eq. (29), though a 
different normalization. Due to our assumption of statistical inde-
pendence and the resulting accumulation of the spacetime fluctu-
ations, we find an extra factor L/lp compared to ’t Hooft.

8. Conclusion and discussion

In this Letter we have constructed a concrete holographic model 
of transversally correlated longitudinal distance fluctuations, due to 
vacuum energy fluctuations of the (holographic) degrees of free-
dom associated with a causally connected volume of spacetime. 
By assuming that the energy of these fluctuations is of the order 
1/L, where L is the length of the interferometer arm, and that 
number of fluctuating degrees of freedom is L2/l2p , we have de-

rived length fluctuations of size δL2 ∼ lp L. The strong transverse 
correlation implies that in interferometer experiments the length 
fluctuations are sufficiently coherent across the light beam, so that 
they are in principle observable.

If a signal with the characteristic features of our model is ob-
served it would be a confirmation that our postulates regarding 
the theory of quantum gravity in flat spacetime are realized. Con-
versely, if no signal is observed in an appropriately sensitive inter-
ferometer, it would tell us that one our proposed postulates does 
not hold. In either case, we will have obtained concrete experimen-
tal information about the underlying theory of quantum gravity.

Our results were derived for a simple toy Michelson interferom-
eter, so the next step is to concretely connect the result in Eq. (29)
to a power spectral density and to realistic interferometers. The 
closest experimental set-up to our toy is the “Holometer” [19], but 
to make a concrete comparison to experimental results requires at 
minimum a computation extending Eq. (29) to include the (likely 
�-dependent) frequency information in the PSD. Gravitational wave 
interferometers like LIGO and Virgo have multiple light-crossings; 
in our model we expect the signal from each subsequent light-
crossing to be statistically uncorrelated, effectively reducing the 
signal in Eq. (29) by a factor of the number of light crossings (as 
discussed in Ref. [12]). To fully determine the observational im-
plications of our results one needs to incorporate these and other 
experimental aspects in to our model.

The transversal correlation of our model also has other im-
portant phenomenological implications. Previous attempts to con-
sider phenomenological effects from Planckian Brownian noise (see 
Refs. [20,13], and as suggested by Eq. (3)-(5)) were stymied by the 
blurring of images from distant astrophysical sources. If the fluc-
tuations are uncorrelated in the transverse direction, this implies 
large deviations in the phase of the light [14]. In the model un-
der consideration here, however, most of the power in the length 
fluctuations is contained in low �-modes, as shown in Eq. (29), 
that are coherent across the aperture diameter D of an optical 
device, namely those with � ≤ 2π L/D . These modes do not af-
fect the quality of the image of astronomical objects. In our model 
the image quality is therefore improved compared to previously 
considered situations. To fully establish that the transversal corre-
5

lations are sufficient to evade the astrophysical constraints needs 
further study.

On the theoretical side the most important open question is the 
precise nature of the holographic degrees of freedom that are re-
sponsible for the spacetime fluctuations. A possible route to gain 
more control over the microscopic theory is to consider an inter-
ferometer in Anti-de Sitter space, and to reformulate the problem 
in terms of observables of the dual conformal field theory. The 
question is then to isolate the microscopic degrees of freedom dual 
to a small causal diamond deep inside the AdS geometry. Another 
promising direction is to relate our description to the recent works 
on the BMS-group, soft gravitons and gravitational memory effects 
[21,22]. In this context one is dealing with coordinate shifts at spa-
tial infinity, or at event horizons of black holes [23]. The theoretical 
challenge in this case is to generalize these studies to finite size 
causal diamonds, and determine the fluctuation spectrum of the 
coordinate shifts. We will leave these theoretical, as well as the 
phenomenological, analyses to future work.
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