13 research outputs found

    Complete Genome Sequence of Streptomyces lavendulae subsp. lavendulae CCM 3239 (Formerly “Streptomyces aureofaciens CCM 3239”), a Producer of the Angucycline-Type Antibiotic Auricin

    Get PDF
    Busche T, Novakova R, Al'Dilaimi A, et al. Complete Genome Sequence of Streptomyces lavendulae subsp. lavendulae CCM 3239 (Formerly “Streptomyces aureofaciens CCM 3239”), a Producer of the Angucycline-Type Antibiotic Auricin. Genome Announcements. 2018;6(9): e00103-18.Streptomyces lavendulae subsp. lavendulae CCM 3239 produces the angucycline antibiotic auricin and was thought to be the type strain of Streptomyces aureofaciens. We report the complete genome sequence of this strain, which consists of a linear chromosome and the linear plasmid pSA3239, and demonstrate it to be S. lavendulae subsp. lavendulae

    A Regulator Based “Semi-Targeted” Approach to Activate Silent Biosynthetic Gene Clusters

    No full text
    By culturing microorganisms under standard laboratory conditions, most biosynthetic gene clusters (BGCs) are not expressed, and thus, the products are not produced. To explore this biosynthetic potential, we developed a novel “semi-targeted” approach focusing on activating “silent” BGCs by concurrently introducing a group of regulator genes into streptomycetes of the Tübingen strain collection. We constructed integrative plasmids containing two classes of regulatory genes under the control of the constitutive promoter ermE*p (cluster situated regulators (CSR) and Streptomyces antibiotic regulatory proteins (SARPs)). These plasmids were introduced into Streptomyces sp. TÜ17, Streptomyces sp. TÜ10 and Streptomyces sp. TÜ102. Introduction of the CSRs-plasmid into strain S. sp. TÜ17 activated the production of mayamycin A. By using the individual regulator genes, we proved that Aur1P, was responsible for the activation. In strain S. sp. TÜ102, the introduction of the SARP-plasmid triggered the production of a chartreusin-like compound. Insertion of the CSRs-plasmid into strain S. sp. TÜ10 resulted in activating the warkmycin-BGC. In both recombinants, activation of the BGCs was only possible through the simultaneous expression of aur1PR3 and griR in S. sp. TÜ102 and aur1P and pntR in of S. sp. TÜ10

    SYN-View: A Phylogeny-Based Synteny Exploration Tool for the Identification of Gene Clusters Linked to Antibiotic Resistance

    No full text
    The development of new antibacterial drugs has become one of the most important tasks of the century in order to overcome the posing threat of drug resistance in pathogenic bacteria. Many antibiotics originate from natural products produced by various microorganisms. Over the last decades, bioinformatical approaches have facilitated the discovery and characterization of these small compounds using genome mining methodologies. A key part of this process is the identification of the most promising biosynthetic gene clusters (BGCs), which encode novel natural products. In 2017, the Antibiotic Resistant Target Seeker (ARTS) was developed in order to enable an automated target-directed genome mining approach. ARTS identifies possible resistant target genes within antibiotic gene clusters, in order to detect promising BGCs encoding antibiotics with novel modes of action. Although ARTS can predict promising targets based on multiple criteria, it provides little information about the cluster structures of possible resistant genes. Here, we present SYN-view. Based on a phylogenetic approach, SYN-view allows for easy comparison of gene clusters of interest and distinguishing genes with regular housekeeping functions from genes functioning as antibiotic resistant targets. Our aim is to implement our proposed method into the ARTS web-server, further improving the target-directed genome mining strategy of the ARTS pipeline

    A Regulator Based "Semi-Targeted" Approach to Activate Silent Biosynthetic Gene Clusters

    No full text
    Mingyar E, Muhling L, Kulik A, et al. A Regulator Based "Semi-Targeted" Approach to Activate Silent Biosynthetic Gene Clusters. International journal of molecular sciences. 2021;22(14): 7567.By culturing microorganisms under standard laboratory conditions, most biosynthetic gene clusters (BGCs) are not expressed, and thus, the products are not produced. To explore this biosynthetic potential, we developed a novel "semi-targeted" approach focusing on activating "silent" BGCs by concurrently introducing a group of regulator genes into streptomycetes of the Tubingen strain collection. We constructed integrative plasmids containing two classes of regulatory genes under the control of the constitutive promoter ermE*p (cluster situated regulators (CSR) and Streptomyces antibiotic regulatory proteins (SARPs)). These plasmids were introduced into Streptomyces sp. TU17, Streptomyces sp. TU10 and Streptomyces sp. TU102. Introduction of the CSRs-plasmid into strain S. sp. TU17 activated the production of mayamycin A. By using the individual regulator genes, we proved that Aur1P, was responsible for the activation. In strain S. sp. TU102, the introduction of the SARP-plasmid triggered the production of a chartreusin-like compound. Insertion of the CSRs-plasmid into strain S. sp. TU10 resulted in activating the warkmycin-BGC. In both recombinants, activation of the BGCs was only possible through the simultaneous expression of aur1PR3 and griR in S. sp. TU102 and aur1P and pntR in of S. sp. TU10

    Activation and identification of a griseusin cluster in streptomyces sp. Ca-256286 by employing transcriptional regulators and multi-omics methods

    No full text
    Streptomyces are well-known producers of a range of different secondary metabolites, including antibiotics and other bioactive compounds. Recently, it has been demonstrated that “silent” biosynthetic gene clusters (BGCs) can be activated by heterologously expressing transcriptional regulators from other BGCs. Here, we have activated a silent BGC in Streptomyces sp. CA-256286 by overexpression of a set of SARP family transcriptional regulators. The structure of the produced compound was elucidated by NMR and found to be an N-acetyl cysteine adduct of the pyranonaphtoquinone polyketide 3′-O-α-d-forosaminyl-(+)-griseusin A. Employing a combination of multi-omics and metabolic engineering techniques, we identified the responsible BGC. These methods include genome mining, proteomics and transcriptomics analyses, in combination with CRISPR induced gene inactivations and expression of the BGC in a heterologous host strain. This work demonstrates an easy-to-implement workflow of how silent BGCs can be activated, followed by the identification and characterization of the produced compound, the responsible BGC, and hints of its biosynthetic pathway
    corecore