10 research outputs found

    Early indicators of exposure to biological threat agents using host gene profiles in peripheral blood mononuclear cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective prophylaxis and treatment for infections caused by biological threat agents (BTA) rely upon early diagnosis and rapid initiation of therapy. Most methods for identifying pathogens in body fluids and tissues require that the pathogen proliferate to detectable and dangerous levels, thereby delaying diagnosis and treatment, especially during the prelatent stages when symptoms for most BTA are indistinguishable flu-like signs.</p> <p>Methods</p> <p>To detect exposures to the various pathogens more rapidly, especially during these early stages, we evaluated a suite of host responses to biological threat agents using global gene expression profiling on complementary DNA arrays.</p> <p>Results</p> <p>We found that certain gene expression patterns were unique to each pathogen and that other gene changes occurred in response to multiple agents, perhaps relating to the eventual course of illness. Nonhuman primates were exposed to some pathogens and the <it>in vitro</it> and <it>in vivo</it> findings were compared. We found major gene expression changes at the earliest times tested post exposure to aerosolized <it>B. anthracis </it>spores and 30 min post exposure to a bacterial toxin.</p> <p>Conclusion</p> <p>Host gene expression patterns have the potential to serve as diagnostic markers or predict the course of impending illness and may lead to new stage-appropriate therapeutic strategies to ameliorate the devastating effects of exposure to biothreat agents.</p

    Viral Replication and Host Gene Expression in Alveolar Macrophages Infected with Ebola Virus (Zaire Strain)

    No full text
    In order to characterize the cellular response to and identify potential diagnostic markers for the early detection of Ebola virus, an in vitro culture system involving nonhuman primate alveolar macrophages was developed. Ebola virus replication in the alveolar macrophages was characterized by plaque assay, immunohistochemical analysis, and in situ hybridization. Fluorogenic 5′ -nuclease assays specific for nonhuman primate proinflammatory cytokines and chemokines were designed and used to evaluate mRNA transcription in macrophages infected with Ebola virus. Transient increases in cytokine and chemokine mRNA levels were observed immediately following exposure to Ebola virus. At 2 h postexposure, levels of cytokine and chemokine mRNAs were markedly reduced. Although Ebola virus infection of alveolar macrophages failed to induce a sustained increase in proinflammatory cytokine and chemokine mRNA transcription (potentially reducing the use of these markers as diagnostic tools), the fluorogenic 5′-nuclease assays developed may have prognostic value for individuals infected with Ebola virus. Recently published data have indicated that persons who remain asymptomatic after exposure to Ebola virus are capable of mounting an early proinflammatory cytokine response and that those who become clinically ill are not. If implemented immediately after exposure, these assays could be used to predict which individuals will be more likely to remain asymptomatic as opposed to those who will be more likely to develop clinical signs and eventually succumb to the virus

    Use of Denaturing High-Performance Liquid Chromatography To Identify Bacillus anthracis by Analysis of the 16S-23S rRNA Interspacer Region and gyrA Gene

    No full text
    Denaturing high-performance liquid chromatography (DHPLC) was evaluated as a method for identifying Bacillus anthracis by analyzing two chromosomal targets, the 16S-23S intergenic spacer region (ISR) and the gyrA gene. The 16S-23S ISR was analyzed by this method with 42 strains of B. anthracis, 36 strains of Bacillus cereus, and 12 strains of Bacillus thuringiensis; the gyrA gene was analyzed by this method with 33 strains of B. anthracis, 27 strains of B. cereus, and 9 strains of B. thuringiensis. Two blind panels of 45 samples each were analyzed to evaluate the potential diagnostic capability of this method. Our results show that DHPLC is an efficient method for the identification of B. anthracis
    corecore