10 research outputs found

    Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney

    Get PDF
    Endocytic receptors in the proximal tubule of the mammalian kidney are responsible for the reuptake of numerous ligands, including lipoproteins, sterols, vitamin-binding proteins, and hormones, and they can mediate drug-induced nephrotoxicity. In this paper, we report the first evidence indicating that the pronephric kidneys of Xenopus tadpoles are capable of endocytic transport. We establish that the Xenopus genome harbors genes for the known three endocytic receptors megalin/LRP2, cubilin, and amnionless. The Xenopus endocytic receptor genes share extensive synteny with their mammalian counterparts. In situ hybridizations demonstrated that endocytic receptor expression is highly tissue specific, primarily in the pronephric kidney, and did not occur prior to neurulation. Expression was strictly confined to proximal tubules of the pronephric kidney, which closely resembles the situation reported in mammalian kidneys. By immunohistochemistry, we demonstrated that Xenopus pronephric tubule epithelia express high amounts of the endocytic receptors megalin/lrp2 and cubilin in the apical plasma membrane. Furthermore, functional aspects of the endocytic receptors were revealed by the vesicular localization of retinol-binding protein in the proximal tubules, probably representing endocytosed protein. In summary, we provide here the first comprehensive report of endocytic receptor expression, including amnionless, in a nonmammalian species. Remarkably, renal endocytic receptor expression and function in the Xenopus pronephric kidney closely mirrors the situation in the mammalian kidney. The Xenopus pronephric kidney therefore represents a novel, simple model for physiological studies on the molecular mechanisms underlying renal tubular endocytosi

    Media-induced change in political organizations? Interest groups and their reaction to the media

    Full text link
    The growing importance of the media, as suggested by the concept of “mediatization”, supposedly affects the “playing field” on which political organisations are active. From a neo-institutionalist perspective, we claim that the media can be perceived as constituting one part of the institutional environment of civil society organisations (CSOs) and interest groups. We operationalize structural changes in the organisations as changes in either rules applicable to communication practices or resources dedicated to communication. These reactions in the form of structural changes within the organisations, which can be attributed to the hypothesized growing influence of the media, are labelled “mediatization”. In our research project, we look at CSOs and interest groups in Germany, Switzerland, and the United Kingdom. Here, we present first empirical results, based on the analysis of the Swiss dataset. We discuss which communication instruments are implemented by which interest groups in their external communication (i.e. to policy-makers, to journalists or the public), their internal communication (to their members and supporters) and in monitoring their external environments. Data on how CSOs and interest groups evaluate the importance of the different instruments in their communication repertoire are presented. Thus, media-induced organisational change in interest groups can be assessed

    VISIONS:the VISTA Star Formation Atlas I. Survey overview

    Get PDF
    VISIONS is an ESO public survey of five nearby (d < 500 pc) star-forming molecular cloud complexes that are canonically associated with the constellations of Chamaeleon, Corona Australis, Lupus, Ophiuchus, and Orion. The survey was carried out with the Visible and Infrared Survey Telescope for Astronomy (VISTA), using the VISTA Infrared Camera (VIRCAM), and collected data in the near-infrared passbands J (1.25 ÎŒm), H (1.65 ÎŒm), and KS (2.15 ÎŒm). With a total on-sky exposure time of 49.4h VISIONS covers an area of 650 deg2, it is designed to build an infrared legacy archive with a structure and content similar to the Two Micron All Sky Survey (2MASS) for the screened star-forming regions. Taking place between April 2017 and March 2022, the observations yielded approximately 1.15 million images, which comprise 19 TB of raw data. The observations undertaken within the survey are grouped into three different subsurveys. First, the wide subsurvey comprises shallow, large-scale observations and it has revisited the star-forming complexes six times over the course of its execution. Second, the deep subsurvey of dedicated high-sensitivity observations has collected data on areas with the largest amounts of dust extinction. Third, the control subsurvey includes observations of areas of low-to-negligible dust extinction. Using this strategy, the VISIONS observation program offers multi-epoch position measurements, with the ability to access deeply embedded objects, and it provides a baseline for statistical comparisons and sample completeness – all at the same time. In particular, VISIONS is designed to measure the proper motions of point sources, with a precision of 1 mas yr−1 or better, when complemented with data from the VISTA Hemisphere Survey (VHS). In this way, VISIONS can provide proper motions of complete ensembles of embedded and low-mass objects, including sources inaccessible to the optical ESA Gaia mission. VISIONS will enable the community to address a variety of research topics from a more informed perspective, including the 3D distribution and motion of embedded stars and the nearby interstellar medium, the identification and characterization of young stellar objects, the formation and evolution of embedded stellar clusters and their initial mass function, as well as the characteristics of interstellar dust and the reddening law

    VISIONS:the VISTA Star Formation Atlas I. Survey overview

    Get PDF
    VISIONS is an ESO public survey of five nearby (d < 500 pc) star-forming molecular cloud complexes that are canonically associated with the constellations of Chamaeleon, Corona Australis, Lupus, Ophiuchus, and Orion. The survey was carried out with the Visible and Infrared Survey Telescope for Astronomy (VISTA), using the VISTA Infrared Camera (VIRCAM), and collected data in the near-infrared passbands J (1.25 ÎŒm), H (1.65 ÎŒm), and KS (2.15 ÎŒm). With a total on-sky exposure time of 49.4h VISIONS covers an area of 650 deg2, it is designed to build an infrared legacy archive with a structure and content similar to the Two Micron All Sky Survey (2MASS) for the screened star-forming regions. Taking place between April 2017 and March 2022, the observations yielded approximately 1.15 million images, which comprise 19 TB of raw data. The observations undertaken within the survey are grouped into three different subsurveys. First, the wide subsurvey comprises shallow, large-scale observations and it has revisited the star-forming complexes six times over the course of its execution. Second, the deep subsurvey of dedicated high-sensitivity observations has collected data on areas with the largest amounts of dust extinction. Third, the control subsurvey includes observations of areas of low-to-negligible dust extinction. Using this strategy, the VISIONS observation program offers multi-epoch position measurements, with the ability to access deeply embedded objects, and it provides a baseline for statistical comparisons and sample completeness – all at the same time. In particular, VISIONS is designed to measure the proper motions of point sources, with a precision of 1 mas yr−1 or better, when complemented with data from the VISTA Hemisphere Survey (VHS). In this way, VISIONS can provide proper motions of complete ensembles of embedded and low-mass objects, including sources inaccessible to the optical ESA Gaia mission. VISIONS will enable the community to address a variety of research topics from a more informed perspective, including the 3D distribution and motion of embedded stars and the nearby interstellar medium, the identification and characterization of young stellar objects, the formation and evolution of embedded stellar clusters and their initial mass function, as well as the characteristics of interstellar dust and the reddening law

    VISIONS: The VISTA Star Formation Atlas -- I. Survey overview

    Get PDF
    © The Authors 2023. Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0).VISIONS is an ESO public survey of five nearby (d < 500 pc) star-forming molecular cloud complexes that are canonically associated with the constellations of Chamaeleon, Corona Australis, Lupus, Ophiuchus, and Orion. The survey was carried out with VISTA, using VIRCAM, and collected data in the near-infrared passbands J, H, and Ks. With a total on-sky exposure time of 49.4 h VISIONS covers an area of 650 deg2^2, and it was designed to build an infrared legacy archive similar to that of 2MASS. Taking place between April 2017 and March 2022, the observations yielded approximately 1.15 million images, which comprise 19 TB of raw data. The observations are grouped into three different subsurveys: The wide subsurvey comprises shallow, large-scale observations and has visited the star-forming complexes six times over the course of its execution. The deep subsurvey of dedicated high-sensitivity observations has collected data on the areas with the largest amounts of dust extinction. The control subsurvey includes observations of areas of low-to-negligible dust extinction. Using this strategy, the VISIONS survey offers multi-epoch position measurements, is able to access deeply embedded objects, and provides a baseline for statistical comparisons and sample completeness. In particular, VISIONS is designed to measure the proper motions of point sources with a precision of 1 mas/yr or better, when complemented with data from VHS. Hence, VISIONS can provide proper motions for sources inaccessible to Gaia. VISIONS will enable addressing a range of topics, including the 3D distribution and motion of embedded stars and the nearby interstellar medium, the identification and characterization of young stellar objects, the formation and evolution of embedded stellar clusters and their initial mass function, as well as the characteristics of interstellar dust and the reddening law.Peer reviewe

    VISIONS: the VISTA Star Formation Atlas

    No full text
    The VISIONS public survey provides large-scale, multi-epoch imaging of five nearby star-forming regions at sub-arcsecond resolution in the near-infrared. All data collected within the program and provided by the European Southern Observatory (ESO) science archive are processed with a custom end-to-end pipeline infrastructure to provide science-ready images and source catalogs. The data reduction environment has been specifically developed for the purpose of mitigating several shortcomings of the bona fide data products processed with software provided by the Cambridge Astronomical Survey Unit (CASU), such as spatially variable astrometric and photometric biases of up to 100 mas and 0.1 mag, respectively. At the same time, the resolution of co-added images is up to 20% higher compared to the same products from the CASU processing environment. Most pipeline modules are written in Python and make extensive use of C extension libraries for numeric computations, thereby simultaneously providing accessibility, robustness, and high performance. The astrometric calibration is performed relative to the Gaia reference frame, and fluxes are calibrated with respect to the source magnitudes provided in the Two Micron All Sky Survey (2MASS). For bright sources, absolute astrometric errors are typically on the order of 10–15 mas and fluxes are determined with sub-percent precision. Moreover, the calibration with respect to 2MASS photometry is largely free of color terms. The pipeline produces data that are compliant with the ESO Phase 3 regulations and furthermore provides curated source catalogs that are structured similarly to those provided by the 2MASS survey

    The need for harmonized estimates of forest biodiversity indicators

    Full text link
    The investigations of Working Group 3 of COST Action E43 focused on assessing the ability of NFI's to report harmonized estimates of forest biodiversity indicators using NFI data. Four related factors motivated the investigations. Firstly, the importance of forest biodiversity for the economic, environmental, and social well-being of earth's civilizations is gaining wide international acceptance. Secondly, this acceptance has led to numerous international forest sustainability and biodiversity agreements that require periodic reports of estimates of indicators. Thirdly, the ability to report comparable estimates is impeded by the variety of sampling designs, plot configurations, selected variables, and measurement protocols used by the NFIs of different countries. Fourthly, the features of individual NFIs have evolved in response to unique ecological, economic, topographic, and climatic characteristics, and desire of the individual countries to retain the features. The general conclusion of these motivating factors is that apart from substantial standardization of NFIs, the best method for facilitating comparable reporting is to develop harmonization methods. Working Group 3 undertook a four-phase approach to developing methods for harmonizing estimates of biodiversity indicators using NFI data. The first phase entailed evaluating the importance of biodiversity variables and the feasibility of assessing them using NFI data. The conclusion of this phase was the selection of 17 biodiversity variables that were both important and feasible, grouping of them into seven essential features, and construction of common reference definitions for the variables. The second phase entailed evaluation of the agreement among NFIs with respect to the common definitions and measurement practices. The third phase entailed development of bridges (Stahl et al submitted) for converting estimates of forest biodiversity indicators obtained using national definitions to estimates consistent with the reference definitions. The fourth phase entailed construction of a common database of NFI data contributed by NFIs participating in COST Action E43 and testing of reference definitions and bridges developed by Working Group 3. The following chapters provide details and specific results for the four phases.COST - European Cooperation in Science and Technolog
    corecore