198 research outputs found

    Regionalizing the infrastructure turn : a research agenda

    Get PDF
    An interdisciplinary ‘infrastructure turn’ has emerged over the past 20 years that disputes the concept of urban infrastructure as a staid or neutral set of physical artefacts. Responding to the increased conceptual, geographical and political importance of infrastructure – and endemic issues of access, expertise and governance that the varied provision of infrastructures can cause – this intervention asserts the significance of applying a regional perspective to the infrastructure turn. This paper forwards a critical research agenda for the study of ‘infrastructural regionalisms’ to interrogate: (1) how we study and produce knowledge about infrastructure; (2) how infrastructure is governed across or constrained by jurisdictional boundaries; (3) who drives the construction of regional infrastructural imaginaries; and (4) how individuals and communities differentially experience regional space through infrastructure. Analysing regions through infrastructure provides a novel perspective on the regional question and consequently offers a framework to understand better the implications of the current infrastructure moment for regional spaces worldwide

    DNA bending and unbending by MutS govern mismatch recognition and specificity

    Get PDF
    DNA mismatch repair is central to the maintenance of genomic stability. It is initiated by the recognition of base–base mismatches and insertion/deletion loops by the family of MutS proteins. Subsequently, ATP induces a unique conformational change in the MutS–mismatch complex but not in the MutS–homoduplex complex that sets off the cascade of events that leads to repair. To gain insight into the mechanism by which MutS discriminates between mismatch and homoduplex DNA, we have examined the conformations of specific and nonspecific MutS–DNA complexes by using atomic force microscopy. Interestingly, MutS–DNA complexes exhibit a single population of conformations, in which the DNA is bent at homoduplex sites, but two populations of conformations, bent and unbent, at mismatch sites. These results suggest that the specific recognition complex is one in which the DNA is unbent. Combining our results with existing biochemical and crystallographic data leads us to propose that MutS: (i) binds to DNA nonspecifically and bends it in search of a mismatch; (ii) on specific recognition of a mismatch, undergoes a conformational change to an initial recognition complex in which the DNA is kinked, with interactions similar to those in the published crystal structures; and (iii) finally undergoes a further conformational change to the ultimate recognition complex in which the DNA is unbent. Our results provide a structural explanation for the long-standing question of how MutS achieves mismatch repair specificity

    Tuning the translational freedom of DNA for high speed AFM

    Get PDF
    Direct observation is arguably the preferred way to investigate the interactions between two molecular complexes. With the development of high speed atomic force microscopy it is becoming possible to observe directly DNA protein interactions with relevant spatial and temporal resolutions. These interactions are of central importance to biology, bio-nanotechnology but also functional biologically inspired materials. Critically, sample preparation plays a central role in all microscopy studies and minimal perturbation of the sample is desired. Here, we demonstrate the ability to tune the interactions of DNA molecules with the surface such that an association strong enough to enable high resolution AFM imaging while providing sufficient translational freedom to allow the relevant protein DNA interactions to take place, can be maintained. Furthermore, we describe a quantitative method for measuring the DNA mobility, which also allows the dissection of the different contributions to the overall movement of the DNA molecules. We find that for weak surface association, a significant contribution to the movement arises from the interaction of the AFM tip with the DNA. In combination, these methods enable the tuning of the surface translational freedom of DNA molecules to allow the direct study of a wide range of nucleo-protein interactions by high speed atomic force microscopy

    The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain

    Get PDF
    Abstract Background Cellular RNA polymerases (RNAPs) are complex molecular machines that combine catalysis with concerted conformational changes in the active center. Previous work showed that kinking of a hinge region near the C-terminus of the Bridge Helix (BH-HC) plays a critical role in controlling the catalytic rate. Results Here, new evidence for the existence of an additional hinge region in the amino-terminal portion of the Bridge Helix domain (BH-HN) is presented. The nanomechanical properties of BH-HN emerge as a direct consequence of the highly conserved primary amino acid sequence. Mutations that are predicted to influence its flexibility cause corresponding changes in the rate of the nucleotide addition cycle (NAC). BH-HN displays functional properties that are distinct from BH-HC, suggesting that conformational changes in the Bridge Helix control the NAC via two independent mechanisms. Conclusions The properties of two distinct molecular hinges in the Bridge Helix of RNAP determine the functional contribution of this domain to key stages of the NAC by coordinating conformational changes in surrounding domains.</p

    The effect of nutritional supplementation on the multifocal electroretinogram in healthy eyes

    Get PDF
    BACKGROUND: Previous studies have demonstrated an increase in macular pigment optical density (MPOD) with lutein (L)-based supplementation in healthy eyes. However, not all studies have assessed whether this increase in MPOD is associated with changes to other measures of retinal function such as the multifocal ERG (mfERG). Some studies also fail to report dietary levels of L and zeaxanthin (Z). Because of the associations between increased levels of L and Z, and reduced risk of AMD, this study was designed to assess the effects of L-based supplementation on mfERG amplitudes and latencies in healthy eyes. METHODS: Multifocal ERG amplitudes, visual acuity, contrast sensitivity, MPOD and dietary levels of L and Z were assessed in this longitudinal, randomized clinical trial. Fifty-two healthy eyes from 52 participants were randomly allocated to receive a L-based supplement (treated group), or no supplement (non-treated group). RESULTS: There were 25 subjects aged 18-77 (mean age ± SD; 48 ± 17) in the treated group and 27 subjects aged 21-69 (mean age ± SD; 43 ± 16) in the non-treated group. All participants attended for three visits: visit one at baseline, visit two at 20 weeks and visit three at 40 weeks. A statistically significant increase in MPOD (F = 17.0, p ≤ 0.001) and shortening of mfERG ring 2 P1 latency (F = 3.69, p = 0.04) was seen in the treated group. CONCLUSIONS: Although the results were not clinically significant, the reported trend for improvement in MPOD and mfERG outcomes warrants further investigation

    Transcriptional control in the prereplicative phase of T4 development

    Get PDF
    Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ70, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ70, which then allows the T4 activator MotA to also interact with σ70. In addition, AsiA restructuring of σ70 prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity
    corecore