5,052 research outputs found

    Measurement of geometric phase for mixed states using single photon interferometry

    Full text link
    Geometric phase may enable inherently fault-tolerant quantum computation. However, due to potential decoherence effects, it is important to understand how such phases arise for {\it mixed} input states. We report the first experiment to measure mixed-state geometric phases in optics, using a Mach-Zehnder interferometer, and polarization mixed states that are produced in two different ways: decohering pure states with birefringent elements; and producing a nonmaximally entangled state of two photons and tracing over one of them, a form of remote state preparation.Comment: To appear in Phys. Rev. Lett. 4 pages, 3 figure

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Scaling of the low temperature dephasing rate in Kondo systems

    Get PDF
    We present phase coherence time measurements in quasi-one-dimensional Ag wires doped with Fe Kondo impurities of different concentrations nsn_s. Due to the relatively high Kondo temperature TK4.3KT_{K}\approx 4.3K of this system, we are able to explore a temperature range from above TKT_{K} down to below 0.01TK0.01 T_{K}. We show that the magnetic contribution to the dephasing rate γm\gamma_m per impurity is described by a single, universal curve when plotted as a function of (T/TK)(T/T_K). For T>0.1TKT>0.1 T_K, the dephasing rate is remarkably well described by recent numerical results for spin S=1/2S=1/2 impurities. At lower temperature, we observe deviations from this theory. Based on a comparison with theoretical calculations for S>1/2S>1/2, we discuss possible explanations for the observed deviations.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Properties of D-mesons in nuclear matter within a self-consistent coupled-channel approach

    Full text link
    The spectral density of the DD-meson in the nuclear environment is studied within a self-consistent coupled-channel approach assuming a separable potential for the bare meson-baryon interaction. The DNDN interaction, described through a G-matrix, generates dynamically the Λc\Lambda_c (2593) resonance. This resonance is the charm counterpart of the Λ\Lambda (1405) resonance generated from the s-wave KˉN\bar{K}N interaction in the I=0 channel. The medium modification of the D-meson spectral density due to the Pauli blocking of intermediate states as well as due to the dressing of the D-mesons, nucleons and pions is investigated. We observe that the inclusion of coupled-channel effects and the self-consistent dressing of the DD-meson results in an overall reduction of the in-medium DD-meson changes compared to previous work which neglect those effects.Comment: 23 pages, 10 figures, submitted for publicatio

    Nuclear halo and the coherent nuclear interaction

    Full text link
    The unusual structure of Li11, the first halo nucleus found, is analyzed by the Preparata model of nuclear structure. By applying Coherent Nucleus Theory, we obtain an interaction potential for the halo-neutrons that rightly reproduces the fundamental state of the system.Comment: 9 pages Submitted to International Journal of Modern Physics E (IJMPE

    Qualitative perspectives on how Manchester United Football Club developed and sustained serial winning

    Get PDF
    Talent development in sport is well represented in scientific literature. Yet, the drive to protect ‘trade secrets’ often means that access to these high performing groups is rare, especially as these high level performances are being delivered. This leaves the details of high-end working practices absent from current academic commentary. As a result, clubs interested in developing excellent practice are left to build on personal initiative and insight and/or custom-and-practice, which is unlikely to yield successful outcomes. To address this shortfall the current study reports on prolonged engagement with a single high performing club, considering how their practice corresponds with existing sport talent development models. The paper ends by proposing an evidence-based, football-specific model for talent development, maintained high level performance and serial winning. This model emphasises four dominant features: culture, behavioral characteristics, practice engagement and the managing and guiding of performance ‘potential’. The study provides insights into the visceral reality of daily experiences across the life course of professional soccer, while advancing the evidence-base for understanding how Manchester United achieved their serial success

    Ubiquitous sensorization for multimodal assessment of driving patterns

    Get PDF
    Sustainability issues and sustainable behaviours are becoming concerns of increasing signi cance in our society. In the case of transportation systems, it would be important to know the impact of a given driving behaviour over sustainability factors. This paper describes a system that integrates ubiquitous mobile sensors available on devices such as smartphones, intelligent wristbands and smartwatches, in order to determine and classify driving patterns and to assess driving e ficiency and driver's moods. It first identi fies the main attributes for contextual information, with relevance to driving analysis. Next, it describes how to obtain that information from ubiquitous mobile sensors, usually carried by drivers. Finally, it addresses the multimodal assessment process which produces the analysis of driving patterns and the classi cation of driving moods, promoting the identifi cation of either regular or aggressive driving patterns, and the classi fication of mood types between aggressive and relaxed. Such an approach enables ubiquitous sensing of personal driving patterns across diff erent vehicles, which can be used in sustainability frameworks, driving alerts and recommendation systems.This work is part-funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-028980 (PTDC/EEI-SII/1386/2012). It is also supported by a doctoral grant, SFRH/BD/78713/2011, issued by FCT in Portugal

    Adiabatic response for Lindblad dynamics

    Full text link
    We study the adiabatic response of open systems governed by Lindblad evolutions. In such systems, there is an ambiguity in the assignment of observables to fluxes (rates) such as velocities and currents. For the appropriate notion of flux, the formulas for the transport coefficients are simple and explicit and are governed by the parallel transport on the manifold of instantaneous stationary states. Among our results we show that the response coefficients of open systems, whose stationary states are projections, is given by the adiabatic curvature.Comment: 33 pages, 4 figures, accepted versio

    Imaginary Phases in Two-Level Model with Spontaneous Decay

    Get PDF
    We study a two-level model coupled to the electromagnetic vacuum and to an external classic electric field with fixed frequency. The amplitude of the external electric field is supposed to vary very slow in time. Garrison and Wright [{\it Phys. Lett.} {\bf A128} (1988) 177] used the non-hermitian Hamiltonian approach to study the adiabatic limit of this model and obtained that the probability of this two-level system to be in its upper level has an imaginary geometric phase. Using the master equation for describing the time evolution of the two-level system we obtain that the imaginary phase due to dissipative effects is time dependent, in opposition to Garrison and Wright result. The present results show that the non-hermitian hamiltonian method should not be used to discuss the nature of the imaginary phases in open systems.Comment: 11 pages, new version, to appear in J. Phys.
    corecore