162 research outputs found

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Impact of Software Modeling on the Accuracy of Perfusion MRI in Glioma

    Full text link
    PURPOSE: To determine whether differences in modeling implementation will impact the correction of leakage effects (from blood brain barrier disruption) and relative cerebral blood volume (rCBV) calculations as measured on T2*-weighted dynamic susceptibility-weighted contrast-enhanced (DSC)-MRI at 3T field strength. MATERIALS AND METHODS: This HIPAA-compliant study included 52 glioma patients undergoing DSC-MRI. Thirty-six patients underwent both non Preload Dose (PLD) and PLD-corrected DSC acquisitions, with sixteen patients undergoing PLD-corrected acquisitions only. For each acquisition, we generated two sets of rCBV metrics using two separate, widely published, FDA-approved commercial software packages: IB Neuro (IBN) and NordicICE (NICE). We calculated 4 rCBV metrics within tumor volumes: mean rCBV, mode rCBV, percentage of voxels with rCBV > 1.75 (%>1.75), and percentage of voxels with rCBV > 1.0 (Fractional Tumor Burden or FTB). We determined Pearson (r) and Spearman (ρ) correlations between non-PLD- and PLD-corrected metrics. In a subset of recurrent glioblastoma patients (n=25), we determined Receiver Operator Characteristic (ROC) Areas-Under-Curve (AUC) for FTB accuracy to predict the tissue diagnosis of tumor recurrence versus post-treatment effect (PTRE). We also determined correlations between rCBV and microvessel area (MVA) from stereotactic biopsies (n=29) in twelve patients. RESULTS: Using IBN, rCBV metrics correlated highly between non-PLD- and PLD-corrected conditions for FTB (r=0.96, ρ=0.94), %>1.75 (r=0.93, ρ=0.91), mean (r=0.87, ρ=0.86) and mode (r=0.78, ρ=0.76). These correlations dropped substantially with NICE. Using FTB, IBN was more accurate than NICE in diagnosing tumor vs PTRE (AUC=0.85 vs 0.67) (p<0.01). The highest rCBV-MVA correlations required PLD and IBN (r=0.64, ρ=0.58, p=0.001). CONCLUSIONS: Different implementations of perfusion MRI software modeling can impact the accuracy of leakage correction, rCBV calculation, and correlations with histologic benchmarks

    The Movember Global Action Plan 1 (GAP1): Unique Prostate Cancer Tissue Microarray Resource

    Get PDF
    BackgroundThe need to better understand the molecular underpinnings of the heterogeneous outcomes of patients with prostate cancer is a pressing global problem and a key research priority for Movember. To address this, the Movember Global Action Plan 1 Unique tissue microarray (GAP1-UTMA) project constructed a set of unique and richly annotated tissue microarrays (TMA) from prostate cancer samples obtained from multiple institutions across several global locations.MethodsThree separate TMA sets were built that differ by purpose and disease state.ResultsThe intended use of TMA1 (Primary Matched LN) is to validate biomarkers that help determine which clinically localized prostate cancers with associated lymph node metastasis have a high risk of progression to lethal castration-resistant metastatic disease, and to compare molecular properties of high-risk index lesions within the prostate to regional lymph node metastases resected at the time of prostatectomy. TMA2 (Pre vs. Post ADT) was designed to address questions regarding risk of castration-resistant prostate cancer (CRPC) and response to suppression of the androgen receptor/androgen axis, and characterization of the castration-resistant phenotype. TMA3 (CRPC Met Heterogeneity)'s intended use is to assess the heterogeneity of molecular markers across different anatomic sites in lethal prostate cancer metastases.ConclusionsThe GAP1-UTMA project has succeeded in combining a large set of tissue specimens from 501 patients with prostate cancer with rich clinical annotation.ImpactThis resource is now available to the prostate cancer community as a tool for biomarker validation to address important unanswered clinical questions around disease progression and response to treatment.</p

    The Theory of Brown Dwarfs and Extrasolar Giant Planets

    Full text link
    Straddling the traditional realms of the planets and the stars, objects below the edge of the main sequence have such unique properties, and are being discovered in such quantities, that one can rightly claim that a new field at the interface of planetary science and and astronomy is being born. In this review, we explore the essential elements of the theory of brown dwarfs and giant planets, as well as of the new spectroscopic classes L and T. To this end, we describe their evolution, spectra, atmospheric compositions, chemistry, physics, and nuclear phases and explain the basic systematics of substellar-mass objects across three orders of magnitude in both mass and age and a factor of 30 in effective temperature. Moreover, we discuss the distinctive features of those extrasolar giant planets that are irradiated by a central primary, in particular their reflection spectra, albedos, and transits. Aspects of the latest theory of Jupiter and Saturn are also presented. Throughout, we highlight the effects of condensates, clouds, molecular abundances, and molecular/atomic opacities in brown dwarf and giant planet atmospheres and summarize the resulting spectral diagnostics. Where possible, the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for publication in the Reviews of Modern Physics. 30 figures are color. Most of the figures are in GIF format to reduce the overall size. The full version with figures can also be found at: http://jupiter.as.arizona.edu/~burrows/papers/rm

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km &lt;sup&gt;2&lt;/sup&gt; resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km &lt;sup&gt;2&lt;/sup&gt; pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global Properties of Solar Flares

    Full text link

    The Physics of the B Factories

    Get PDF
    corecore