49 research outputs found
T Cell Responses to Human Endogenous Retroviruses in HIV-1 Infection
Human endogenous retroviruses (HERVs) are remnants of ancient infectious agents that have integrated into the human genome. Under normal circumstances, HERVs are functionally defective or controlled by host factors. In HIV-1-infected individuals, intracellular defense mechanisms are compromised. We hypothesized that HIV-1 infection would remove or alter controls on HERV activity. Expression of HERV could potentially stimulate a T cell response to HERV antigens, and in regions of HIV-1/HERV similarity, these T cells could be cross-reactive. We determined that the levels of HERV production in HIV-1-positive individuals exceed those of HIV-1-negative controls. To investigate the impact of HERV activity on specific immunity, we examined T cell responses to HERV peptides in 29 HIV-1-positive and 13 HIV-1-negative study participants. We report T cell responses to peptides derived from regions of HERV detected by ELISPOT analysis in the HIV-1-positive study participants. We show an inverse correlation between anti-HERV T cell responses and HIV-1 plasma viral load. In HIV-1-positive individuals, we demonstrate that HERV-specific T cells are capable of killing cells presenting their cognate peptide. These data indicate that HIV-1 infection leads to HERV expression and stimulation of a HERV-specific CD8+ T cell response. HERV-specific CD8+ T cells have characteristics consistent with an important role in the response to HIV-1 infection: a phenotype similar to that of T cells responding to an effectively controlled virus (cytomegalovirus), an inverse correlation with HIV-1 plasma viral load, and the ability to lyse cells presenting their target peptide. These characteristics suggest that elicitation of anti-HERV-specific immune responses is a novel approach to immunotherapeutic vaccination. As endogenous retroviral sequences are fixed in the human genome, they provide a stable target, and HERV-specific T cells could recognize a cell infected by any HIV-1 viral variant. HERV-specific immunity is an important new avenue for investigation in HIV-1 pathogenesis and vaccine design
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2
Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701
Author Correction: Drivers of seedling establishment success in dryland restoration efforts
1 Pág.
Correción errata.In the version of this Article originally published, the surname of author Tina Parkhurst was incorrectly written as Schroeder. This has now been corrected.Peer reviewe
Recommended from our members
An Optical Atomic Clock based on Frequency Comb Spectroscopy
Doppler free two-photon spectroscopy of 87Rb is a leading candidate for a portable frequency standard with instability comparable to a hydrogen maser. The required 778 nm light has been achieved through second-harmonic generation of continuous wave (cw) lasers, due to the availability of compact, narrow linewidth, fiber-coupled telecom diodes at 1556 nm. The cw laser was then compared to a frequency comb to convert the optical frequency into a radio frequency. It is alternatively possible to excite the same transition directly with a frequency comb, removing the need for the cw laser and increasing the efficiency of second-harmonic generation. Previous efforts to utilize direct comb spectroscopy as a frequency standard have shown larger instability than their cw counterparts, due in large part to residual Doppler broadening from pulses lasting less than one ps. Herein are discussed the relevant considerations to make direct comb spectroscopy perform equivalently to cw two-photon spectroscopy, most importantly, narrowly filtering the optical bandwidth. The leading sources of instability are explained and methods for compensation are implemented. Features which distinguish direct comb spectroscopy from cw two-photon spectroscopy, such as spectral aliasing, pulse overlap volume, and the residual Stark shift, are evaluated theoretically and experimentally. Direct comb spectroscopy is shown to be capable of resolving the two photon transitions with equivalent linewidth and equivalent ac-Stark shift compared to cw two-photon spectroscopy, with total fluorescence capture of up to 60%. By recording relative frequency deviations between two nearly identical direct comb clocks, instability rivaling the state-of-the-art compact optical frequency standard is shown, with fractional frequency Allan deviation at 1.7×10−13 at one second averaging down to 3×10−14 at 1000 s before drifting in longer timescales. The drift at times longer than an hour is shown to correlate with room temperature, offering some explanation for its source and solution. Efforts towards miniaturization and packaging and future directions for research are discussed
Recommended from our members
Dual-comb absorption spectroscopy of molecular CeO in a laser-produced plasma
Broadband and high-resolution absorption spectra of molecular cerium oxide (CeO) are obtained in a laser-produced plasma using dual-comb spectroscopy. Simultaneous measurements of Ce and CeO are used to probe time-resolved dynamics of the system. A spectral resolution of 1.24 GHz (2.4 pm) over a bandwidth of 378.7–383.7 THz (781.1–791.5 nm) allows simultaneous detection of hundreds of closely spaced rotational transitions in complex CeO bands.Defense Threat Reduction Agency (HDTRA1-20-2-0001); Air Force Office of Scientific Research (FA9550-20- 294 261 1-0273).12 month embargo; published: 05 May 2022This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]