744 research outputs found
Design of blended rolled edges for compact range main reflectors
A procedure to design blended rolled edge terminations for arbitrary rim shape compact range main reflectors is presented. The reflector may be center-fed or offset-fed. The design procedure leads to a reflector which has a continuous and smooth surface. This procedure also ensures small diffracted fields from the junction between the paraboloid and the blended rolled edge while satisfying certain constraints regarding the maximum height of the reflector and minimum operating frequency of the system. The prescribed procedure is used to design several reflectors and the performance of these reflectors is presented
On the General Ericksen-Leslie System: Parodi's Relation, Well-posedness and Stability
In this paper we investigate the role of Parodi's relation in the
well-posedness and stability of the general Ericksen-Leslie system modeling
nematic liquid crystal flows. First, we give a formal physical derivation of
the Ericksen-Leslie system through an appropriate energy variational approach
under Parodi's relation, in which we can distinguish the
conservative/dissipative parts of the induced elastic stress. Next, we prove
global well-posedness and long-time behavior of the Ericksen-Leslie system
under the assumption that the viscosity is sufficiently large. Finally,
under Parodi's relation, we show the global well-posedness and Lyapunov
stability for the Ericksen-Leslie system near local energy minimizers. The
connection between Parodi's relation and linear stability of the
Ericksen-Leslie system is also discussed
Poisson-Bracket Approach to the Dynamics of Nematic Liquid Crystals. The Role of Spin Angular Momentum
Nematic liquid crystals are well modeled as a fluid of rigid rods. Starting
from this model, we use a Poisson-bracket formalism to derive the equations
governing the dynamics of nematic liquid crystals. We treat the spin angular
momentum density arising from the rotation of constituent molecules about their
centers of mass as an independent field and derive equations for it, the mass
density, the momentum density, and the nematic director. Our equations reduce
to the original Leslie-Ericksen equations, including the inertial director term
that is neglected in the hydrodynamic limit, only when the moment of inertia
for angular momentum parallel to the director vanishes and when a dissipative
coefficient favoring locking of the angular frequencies of director rotation
and spin angular momentum diverges. Our equations reduce to the equations of
nematohydrodynamics in the hydrodynamic limit but with dissipative coefficients
that depend on the coefficient that must diverge to produce the Leslie-Ericksen
equations.Comment: 10 pages, to be published in Phys. Rev. E 72(5
Placental histopathology in late preterm infants: clinical implications
Background: The etiopathogenesis of late preterm (LPT) birth is undetermined. Placental histopathology, which reflects an adverse intrauterine environment and is reportedly associated with preterm labor and neonatal morbidities, has not been studied in LPT infants.
Purpose: We investigated placental pathological lesion as markers of an adverse intrauterine environment during LPT labor.
Methods: This retrospective case-control study compared placental histopathological and clinical variables between LPT and term neonates. Placental variables included chorioamnionitis, funisitis, hemorrhage, abruption, infarction, calcification, and syncytial knots. Maternal variables included age, substance abuse, pregnancyassociated diabetes mellitus and hypertension, duration of rupture of membrane, antibiotic use, and magnesium sulfate, whereas, those of neonates included gestational age, birth weight, race, sex, and Apgar scores. Standard statistical proedures were applied to analyze the data.
Results:Chorioamnionitis (50% vs. 17.8%, P
Conclusion: Placental infection is not a risk factor for LPT births. There is a nonsignificant predominance of vascular anomalies in LPT placentas. Higher maternal age, magnesium sulfate therapy, and maternal hypertension are clinical risk factors for LPT labor
Recommended from our members
Interfacility Patient Transfers During COVID-19 Pandemic: Mixed-Methods Study
Introduction: The United States lacks a national interfacility patient transfer coordination system. During the coronavirus 2019 (COVID-19) pandemic, many hospitals were overwhelmed and faced difficulties transferring sick patients, leading some states and cities to form transfer centers intended to assist sending facilities. In this study we aimed to explore clinician experiences with newly implemented transfer coordination centers.
Methods: This mixed-methods study used a brief national survey along with in-depth interviews. The American College of Emergency Physicians Emergency Medicine Practice Research Network (EMPRN) administered the national survey in March 2021. From September–December 2021, semi-structured qualitative interviews were conducted with administrators and rural emergency clinicians in Arizona and New Mexico, two states that started transfer centers during COVID-19.
Results: Among 141 respondents (of 765, 18.4% response rate) to the national EMPRN survey, only 30% reported implementation or expansion of a transfer coordination center during COVID-19. Those with new transfer centers reported no change in difficulty of patient transfers during COVID-19 while those without had increased difficulty. The 17 qualitative interviews expanded upon this, revealing four major themes: 1) limited resources for facilitating transfers even before COVID-19; 2) increased number of and distance to transfer partners during the COVID-19 pandemic; 3) generally positive impacts of transfer centers on workflow, and 4) the potential for continued use of centers to facilitate transfers.
Conclusion: Transfer centers may have offset pandemic-related transfer challenges brought on by the COVID-19 pandemic. Clinicians who frequently need to transfer patients may particularly benefit from ongoing access to such transfer coordination services
Asymptotic Behavior for a Nematic Liquid Crystal Model with Different Kinematic Transport Properties
We study the asymptotic behavior of global solutions to hydrodynamical
systems modeling the nematic liquid crystal flows under kinematic transports
for molecules of different shapes. The coupling system consists of
Navier-Stokes equations and kinematic transport equations for the molecular
orientations. We prove the convergence of global strong solutions to single
steady states as time tends to infinity as well as estimates on the convergence
rate both in 2D for arbitrary regular initial data and in 3D for certain
particular cases
Lattice Boltzmann Simulations of Liquid Crystal Hydrodynamics
We describe a lattice Boltzmann algorithm to simulate liquid crystal
hydrodynamics. The equations of motion are written in terms of a tensor order
parameter. This allows both the isotropic and the nematic phases to be
considered. Backflow effects and the hydrodynamics of topological defects are
naturally included in the simulations, as are viscoelastic properties such as
shear-thinning and shear-banding.Comment: 14 pages, 5 figures, Revte
Recommended from our members
Using Administrative Data to Count Local Populations
There is growing evidence that official population statistics based on the decennial census are inaccurate at the local authority level—the fundamental administrative unit of the UK. This paper investigates the use of locally available administrative data sets for counting populations. The method uses truth tables for combining different data sources with different population coverage according to a defined and therefore replicable set of rules. The result is timelier and geographically more flexible data which is more cost-effective to produce than a survey-based census. Associated techniques for linking diverse data sources at individual and household level are briefly discussed. The methodology is then applied to administrative data from a London borough with about 170,000 people. The results are evaluated and compared with other population sources. The paper concludes by discussing potential improvements including scaling up the work to cover multiple local authorities. The practicalities of using alternative central government data sets are briefly considered. A sequel paper in this journal provides examples of key applications of this approach at local level
Global Weak Solutions to a General Liquid Crystals System
We prove the global existence of finite energy weak solutions to the general
liquid crystals system. The problem is studied in bounded domain of with
Dirichlet boundary conditions and the whole space
- …