117 research outputs found

    Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning.

    Get PDF
    OBJECTIVES:To develop, demonstrate and evaluate an automated deep learning method for multiple cardiovascular structure segmentation. BACKGROUND:Segmentation of cardiovascular images is resource-intensive. We design an automated deep learning method for the segmentation of multiple structures from Coronary Computed Tomography Angiography (CCTA) images. METHODS:Images from a multicenter registry of patients that underwent clinically-indicated CCTA were used. The proximal ascending and descending aorta (PAA, DA), superior and inferior vena cavae (SVC, IVC), pulmonary artery (PA), coronary sinus (CS), right ventricular wall (RVW) and left atrial wall (LAW) were annotated as ground truth. The U-net-derived deep learning model was trained, validated and tested in a 70:20:10 split. RESULTS:The dataset comprised 206 patients, with 5.130 billion pixels. Mean age was 59.9 ± 9.4 yrs., and was 42.7% female. An overall median Dice score of 0.820 (0.782, 0.843) was achieved. Median Dice scores for PAA, DA, SVC, IVC, PA, CS, RVW and LAW were 0.969 (0.979, 0.988), 0.953 (0.955, 0.983), 0.937 (0.934, 0.965), 0.903 (0.897, 0.948), 0.775 (0.724, 0.925), 0.720 (0.642, 0.809), 0.685 (0.631, 0.761) and 0.625 (0.596, 0.749) respectively. Apart from the CS, there were no significant differences in performance between sexes or age groups. CONCLUSIONS:An automated deep learning model demonstrated segmentation of multiple cardiovascular structures from CCTA images with reasonable overall accuracy when evaluated on a pixel level

    A 160-kilobit molecular electronic memory patterned at 10^(11) bits per square centimetre

    Get PDF
    The primary metric for gauging progress in the various semiconductor integrated circuit technologies is the spacing, or pitch, between the most closely spaced wires within a dynamic random access memory (DRAM) circuit. Modern DRAM circuits have 140nm pitch wires and a memory cell size of 0.0408 μm^2. Improving integrated circuit technology will require that these dimensions decrease over time. However, at present a large fraction of the patterning and materials requirements that we expect to need for the construction of new integrated circuit technologies in 2013 have ‘no known solution’. Promising ingredients for advances in integrated circuit technology are nanowires, molecular electronics and defect-tolerant architectures, as demonstrated by reports of single devices and small circuits. Methods of extending these approaches to large-scale, high-density circuitry are largely undeveloped. Here we describe a 160,000-bit molecular electronic memory circuit, fabricated at a density of 10^(11) bits cm^(-2) (pitch 33 nm; memory cell size 0.0011 mm^2), that is, roughly analogous to the dimensions of a DRAM circuit projected to be available by 2020. A monolayer of bistable, [2]rotaxane molecules 10 served as the data storage elements. Although the circuit has large numbers of defects, those defects could be readily identified through electronic testing and isolated using software coding. The working bits were then configured to form a fully functional random access memory circuit for storing and retrieving information

    Incremental prognostic utility of coronary CT angiography for asymptomatic patients based upon extent and severity of coronary artery calcium: results from the COronary CT Angiography EvaluatioN For Clinical Outcomes InteRnational Multicenter (CONFIRM) Study

    Get PDF
    Aim Prior evidence observed no predictive utility of coronary CT angiography (CCTA) over the coronary artery calcium score (CACS) and the Framingham risk score (FRS), among asymptomatic individuals. Whether the prognostic value of CCTA differs for asymptomatic patients, when stratified by CACS severity, remains unknown. Methods and results From a 12-centre, 6-country observational registry, 3217 asymptomatic individuals without known coronary artery disease (CAD) underwent CACS and CCTA. Individuals were categorized by CACS as: 0-10, 11-100, 101-400, 401-1000, >1000. For CCTA analysis, the number of obstructive vessels—as defined by the per-patient presence of a ≥50% luminal stenosis—was used to grade the extent and severity of CAD. The incremental prognostic value of CCTA over and above FRS was measured by the likelihood ratio (LR) χ2, C-statistic, and continuous net reclassification improvement (NRI) for prediction, discrimination, and reclassification of all-cause mortality and non-fatal myocardial infarction. During a median follow-up of 24 months (25th-75th percentile, 17-30 months), there were 58 composite end-points. The incremental value of CCTA over FRS was demonstrated in individuals with CACS >100 (LRχ2, 25.34; increment in C-statistic, 0.24; NRI, 0.62, all P 0.05). For subgroups with CACS >100, the utility of CCTA for predicting the study end-point was evident among individuals whose CACS ranged from 101 to 400; the observed predictive benefit attenuated with increasing CACS. Conclusion Coronary CT angiography provides incremental prognostic utility for prediction of mortality and non-fatal myocardial infarction for asymptomatic individuals with moderately high CACS, but not for lower or higher CAC

    a retrospective case–control study from the PARADIGM registry

    Get PDF
    Funding Information: Dr. Jonathon A. Leipsic serves as a consultant and has stock options in HeartFlow and Circle Cardiovascular Imaging; he also receives grant support from GE Healthcare and speaking fees from Philips. Dr. Habib Samady has an equity interest in Covanos. Dr. Daniel Berman receives software royalties from Cedars-Sinai Medical Center. Dr. James K. Min receives funding from the Dalio Foundation, National Institutes of Health, and GE Healthcare. Dr. Min serves on the scientific advisory board of Arineta and GE Healthcare and has an equity interest in Cleerly. All other authors declare that they have no competing interests. Funding Information: This work was supported by the Korea Medical Device Development Fund grant funded by the Korean government (Ministry of Science and ICT; Ministry of Trade, Industry and Energy; Ministry of Health & Welfare, Republic of Korea; and Ministry of Food and Drug Safety; Project Number: 202016B02). Publisher Copyright: © 2022, The Author(s).Background: The baseline coronary plaque burden is the most important factor for rapid plaque progression (RPP) in the coronary artery. However, data on the independent predictors of RPP in the absence of a baseline coronary plaque burden are limited. Thus, this study aimed to investigate the predictors for RPP in patients without coronary plaques on baseline coronary computed tomography angiography (CCTA) images. Methods: A total of 402 patients (mean age: 57.6 ± 10.0 years, 49.3% men) without coronary plaques at baseline who underwent serial coronary CCTA were identified from the Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging (PARADIGM) registry and included in this retrospective study. RPP was defined as an annual change of ≥ 1.0%/year in the percentage atheroma volume (PAV). Results: During a median inter-scan period of 3.6 years (interquartile range: 2.7–5.0 years), newly developed coronary plaques and RPP were observed in 35.6% and 4.2% of the patients, respectively. The baseline traditional risk factors, i.e., advanced age (≥ 60 years), male sex, hypertension, diabetes mellitus, hyperlipidemia, obesity, and current smoking status, were not significantly associated with the risk of RPP. Multivariate linear regression analysis showed that the serum hemoglobin A1c level (per 1% increase) measured at follow-up CCTA was independently associated with the annual change in the PAV (β: 0.098, 95% confidence interval [CI]: 0.048–0.149; P < 0.001). The multiple logistic regression models showed that the serum hemoglobin A1c level had an independent and positive association with the risk of RPP. The optimal predictive cut-off value of the hemoglobin A1c level for RPP was 7.05% (sensitivity: 80.0%, specificity: 86.7%; area under curve: 0.816 [95% CI: 0.574–0.999]; P = 0.017). Conclusion: In this retrospective case–control study, the glycemic control status was strongly associated with the risk of RPP in patients without a baseline coronary plaque burden. This suggests that regular monitoring of the glycemic control status might be helpful for preventing the rapid progression of coronary atherosclerosis irrespective of the baseline risk factors. Further randomized investigations are necessary to confirm the results of our study. Trial registration: ClinicalTrials.gov NCT02803411.publishersversionpublishe

    Results from the PARADIGM registry

    Get PDF
    Funding Information: This work was supported by the Korea Medical Device Development Fund grant funded by the Korean government (Ministry of Science and ICT; Ministry of Trade, Industry and Energy; Ministry of Health & Welfare, Republic of Korea; and Ministry of Food and Drug Safety; Project Number: 202016B02) and funded in part by a generous gift from the Dalio Institute of Cardiovascular Imaging and the Michael Wolk Foundation. This work was also supported by the National Research Foundation of Korea [RS‐2022‐00165404, 2022R1A5A6000840, 2020R1I1A1A01073151]. The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. Publisher Copyright: © 2023 The Authors. Clinical Cardiology published by Wiley Periodicals, LLC.Background and Hypothesis: The recently introduced Bayesian quantile regression (BQR) machine-learning method enables comprehensive analyzing the relationship among complex clinical variables. We analyzed the relationship between multiple cardiovascular (CV) risk factors and different stages of coronary artery disease (CAD) using the BQR model in a vessel-specific manner. Methods: From the data of 1,463 patients obtained from the PARADIGM (NCT02803411) registry, we analyzed the lumen diameter stenosis (DS) of the three vessels: left anterior descending (LAD), left circumflex (LCx), and right coronary artery (RCA). Two models for predicting DS and DS changes were developed. Baseline CV risk factors, symptoms, and laboratory test results were used as the inputs. The conditional 10%, 25%, 50%, 75%, and 90% quantile functions of the maximum DS and DS change of the three vessels were estimated using the BQR model. Results: The 90th percentiles of the DS of the three vessels and their maximum DS change were 41%–50% and 5.6%–7.3%, respectively. Typical anginal symptoms were associated with the highest quantile (90%) of DS in the LAD; diabetes with higher quantiles (75% and 90%) of DS in the LCx; dyslipidemia with the highest quantile (90%) of DS in the RCA; and shortness of breath showed some association with the LCx and RCA. Interestingly, High-density lipoprotein cholesterol showed a dynamic association along DS change in the per-patient analysis. Conclusions: This study demonstrates the clinical utility of the BQR model for evaluating the comprehensive relationship between risk factors and baseline-grade CAD and its progression.publishersversionepub_ahead_of_prin
    corecore