21 research outputs found

    Omiganan Enhances Imiquimod-Induced Inflammatory Responses in Skin of Healthy Volunteers

    Get PDF
    Omiganan (OMN; a synthetic cationic peptide) and imiquimod (IMQ; a TLR7 agonist) have synergistic effects on interferon responses in vitro. The objective of this study was to translate this to a human model for proof-of-concept, and to explore the potential of OMN add-on treatment for viral skin diseases. Sixteen healthy volunteers received topical IMQ, OMN, or a combination of both for up to 4 days on tape-stripped skin. Skin inflammation was quantified by laser speckle contrast imaging and 2D photography, and molecular and cellular responses were analyzed in biopsies. IMQ treatment induced an inflammatory response of the skin. Co-treatment with OMN enhanced this inflammatory response to IMQ, with increases in perfusion (+17.1%; 95% confidence interval (CI) 5.6%–30%; P < 0.01) and erythema (+1.5; 95% CI 0.25%–2.83; P = 0.02). Interferon regulatory factor-driven and NFκB-driven responses following TLR7 stimulation were enhanced by OMN (increases in IL-6, IL-10, MXA, and IFNɣ), and more immune cell infiltration was observed (in particular CD4+, CD8+, and CD14+ cells). These findings are in line with the earlier mechanistic in vitro data, and support evaluation of imiquimod/OMN combination therapy in human papillomavirus-induced skin diseases

    Impact of oral administration of single strain Lactococcus lactis spp. cremoris on immune responses to keyhole limpet hemocyanin immunization and gut microbiota: A randomized placebo-controlled trial in healthy volunteers

    Get PDF
    IntroductionLactococcus lactis spp. cremoris has been associated with promising immunomodulatory results in preclinical trials. The aim of this study was to investigate the pharmacodynamic (PD) effects of three monoclonal microbial formulations of L. lactis spp. cremoris (EDP1066) on the immune response to keyhole limpet hemocyanin (KLH). Potential effects on the gut microbiota were also investigated.MethodsThe trial was registered on Netherlands Trial Register (trial ID NL7519, https://trialsearch.who.int). Eighty-one healthy subjects (median 28, range 18–59 years) were randomized to 28 days of enteric-coated capsules at five doses (n = 13) (1.5 * 1012 total cells daily), freeze-dried powder at one dose (n = 12) (3.0 * 1011 total cells daily) or five doses (n = 12), minitablets at one dose (n = 12) or five doses (n = 12), or placebo (n = 20) prior to KLH immunization. Antibody responses and circulating regulatory T cells (Tregs) were measured after KLH immunization, and skin responses were evaluated after a KLH rechallenge by laser speckle contrast imaging and multispectral imaging. Ex vivo lymphocyte (phytohemagglutinin) and monocyte (lipopolysaccharide (LPS)) cytokine release assays were explored in the minitablet-treated groups only. The prevalence of L. lactis spp. cremoris in the gastrointestinal tract and the impact on the fecal microbiota were assessed by qPCR and 16S rRNA sequencing, respectively.ResultsRepeated-measures analysis of covariances revealed no significant treatment effects on the antibody responses to KLH, number of Tregs, or KLH skin rechallenge outcomes. Ex vivo LPS-driven cytokine responses in whole blood were lower in the low dose minitablet group compared to placebo: tumor necrosis factor (estimated difference (ED) from placebo: −44.2%, 95% confidence interval (CI) −65.3% to −10.3%), interleukin (IL)-1β (ED −41.4%, 95% CI −63.5% to −5.8%), and IL-6 (ED −39.2%, 95% CI −56.8% to −14.5%). The fecal presence of L. lactis spp. cremoris increased during treatment by all EDP1066 formulations and normalized 5 days after the last dose. Microbiome α-diversity did not change by the treatments compared to placebo.DiscussionThe EDP1066 formulations did not affect the immune response to KLH immunization in healthy individuals. However, exposure to L. lactis spp. cremoris in minitablet formulation impacted ex vivo whole blood LPS cytokine response. The clinical impact of these effects awaits further investigations.Netherlands Trial Registertrialsearch.who.int, trial ID NL7519

    Safety, pharmacokinetics and exploratory pro-cognitive effects of HTL0018318, a selective M1 receptor agonist, in healthy younger adult and elderly subjects: a multiple ascending dose study.

    Get PDF
    Funder: Sosei HeptaresBACKGROUND: The cholinergic system and M1 receptor remain an important target for symptomatic treatment of cognitive dysfunction. The selective M1 receptor partial agonist HTL0018318 is under development for the symptomatic treatment of Dementia's including Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). We investigated the safety, tolerability, pharmacokinetics and exploratory pharmacodynamics of multiple doses of HTL0018318 in healthy younger adults and elderly subjects. METHODS: This randomised, double blind, placebo-controlled study was performed, investigating oral doses of 15-35 mg/day HTL0018318 or placebo in 7 cohorts of healthy younger adult (n = 36; 3 cohorts) and elderly (n = 50; 4 cohorts) subjects. Safety, tolerability and pharmacokinetic measurements were performed. Pharmacodynamics were assessed using a battery of neurocognitive tasks and electrophysiological biomarkers of synaptic and cognitive functions. RESULTS: HTL0018318 was generally well-tolerated in multiple doses up to 35 mg/day and were associated with mild or moderate cholinergic adverse events. There were modest increases in blood pressure and pulse rate when compared to placebo-treated subjects, with tendency for the blood pressure increase to attenuate with repeated dosing. There were no clinically significant observations or changes in blood and urine laboratory measures of safety or abnormalities in the ECGs and 24-h Holter assessments. HTL0018318 plasma exposure was dose-proportional over the range 15-35 mg. Maximum plasma concentrations were achieved after 1-2 h. The apparent terminal half-life of HTL0018318 was 16.1 h (± 4.61) in younger adult subjects and 14.3 h (± 2.78) in elderly subjects at steady state. HTL0018318 over the 10 days of treatment had significant effects on tests of short-term (working) memory (n-back) and learning (Milner maze) with moderate to large effect sizes. CONCLUSION: Multiple doses of HTL0018138 showed well-characterised pharmacokinetics and were safe and generally well-tolerated in the dose range studied. Pro-cognitive effects on short-term memory and learning were demonstrated across the dose range. These data provide encouraging data in support of the development of HTL0018138 for cognitive dysfunction in AD and DLB. TRIAL REGISTRATION: Netherlands Trial Register identifier NTR5781 . Registered on 22 March 2016

    Safety, pharmacokinetics and pharmacodynamics of HTL0009936, a selective muscarinic M1 -acetylcholine receptor agonist: A randomized cross-over trial.

    Get PDF
    AIMS: HTL0009936 is a selective M1 muscarinic receptor agonist in development for cognitive dysfunction in Alzheimer's disease. Safety, tolerability and pharmacokinetics and exploratory pharmacodynamic effects of HTL0009936 administered by continuous IV infusion at steady state were investigated in elderly subjects with below average cognitive functioning (BACF). METHODS: Part A was a four-treatment open label sequential study in healthy elderly investigating 10-83 mg HTL0009936 (IV) and a 24 mg HTL0009936 single oral dose. Part B was a five-treatment randomized, double-blind, placebo and physostigmine controlled cross-over study with IV HTL0009936 in elderly subjects with BACF. Pharmacodynamic assessments were performed using neurocognitive and electrophysiological tests. RESULTS: Pharmacokinetics of HTL0009936 showed dose-proportional increases in exposure with a mean half-life of 2.4 hours. HTL0009936 was well-tolerated with transient dose-related adverse events (AEs). Small increases in mean systolic blood pressure of 7.12 mmHg (95% CI [3.99-10.24]) and in diastolic of 5.32 mmHg (95% CI [3.18-7.47]) were noted at the highest dose in part B. Overall, there was suggestive, but no definitive, positive or negative pharmacodynamic effects. Statistically significant effects were observed on P300 with HTL0009936 and adaptive tracking with physostigmine. CONCLUSIONS: HTL0009936 showed well-characterized pharmacokinetics and single doses were safe and generally well-tolerated in healthy elderly subjects. Due to physostigmine tolerability issues and subject burden, the study design was changed and some pharmacodynamic assessments (neurocognitive) were performed at suboptimal drug exposures. Therefore no clear conclusions can be made on pharmacodynamic effects of HTL0009936, although an effect on P300 is suggestive of central target engagement

    Unexpected diversity in socially synchronized rhythms of shorebirds

    Get PDF
    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within-and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.</p

    Unexpected diversity in socially synchronized rhythms of shorebirds

    Get PDF
    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment1, 2, 3, 4. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions1, 5, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators6, 7, 8, 9, 10. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring)6, 7, 8, 9, 11. The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood5, 6, 7, 9. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization12 where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent’s incubation bout varied from 1–19 h, whereas period length—the time in which a parent’s probability to incubate cycles once between its highest and lowest value—varied from 6–43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light–dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity5, 6, 7, 9. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms

    First‐in‐human trial to assess safety, tolerability, pharmacokinetics, and pharmacodynamics of zagociguat (CY6463), a CNS‐penetrant soluble guanylyl cyclase stimulator

    No full text
    Abstract Soluble guanylate cyclase (sGC) and its product, cyclic guanosine monophosphate, play a role in learning and memory formation. Zagociguat (CY6463) is a novel stimulator of sGC being developed for the treatment of neurodegenerative disease. Single zagociguat doses of 0.3, 1, 3, 10, 20, 30, and 50 mg were administered once to healthy participants in a single‐ascending‐dose phase; then zagociguat 2, 5, 10, and 15 mg was administered q.d. for 14 days in a multiple‐ascending‐dose phase; and, finally, zagociguat 10 mg was administered once in both fed and fasted state in a food‐interaction phase. Safety of zagociguat was evaluated by monitoring treatment‐emergent adverse events, suicide risk, vital signs, electrocardiography, and laboratory tests. Pharmacokinetics of zagociguat were assessed through blood, urine, and cerebrospinal fluid sampling. Pharmacodynamic effects of zagociguat were evaluated with central nervous system (CNS) tests and pharmaco‐electroencephalography. Zagociguat was well‐tolerated across all doses evaluated. Zagociguat exposures increased in a dose‐proportional manner. Median time to maximum concentration ranged from 0.8 to 5 h and mean terminal half‐life from 52.8 to 67.1 h. CNS penetration of the compound was confirmed by cerebrospinal fluid sampling. Zagociguat induced up to 6.1 mmHg reduction in mean systolic and up to 7.5 mmHg reduction in mean diastolic blood pressure. No consistent pharmacodynamic (PD) effects on neurocognitive function were observed. Zagociguat was well‐tolerated, CNS‐penetrant, and demonstrated PD activity consistent with other sGC stimulators. The results of this study support further development of zagociguat

    First Clinical Study with AP30663 - a KCa2 Channel Inhibitor in Development for Conversion of Atrial Fibrillation

    Get PDF
    Pharmacological cardioversion of atrial fibrillation (AF) is frequently inefficacious. AP30663, a small conductance Ca2+ activated K+ (KCa2) channel blocker, prolonged the atrial effective refractory period in preclinical studies and subsequently converted AF into normal sinus rhythm. This first-in-human study evaluated the safety and tolerability, and pharmacokinetic (PK) and pharmacodynamic (PD) effects were explored. Forty-seven healthy male volunteers (23.7 ± 3.0 years) received AP30663 intravenously in ascending doses. Due to infusion site reactions, changes to the formulation and administration were implemented in the latter 24 volunteers. Extractions from a 24-hour continuous electrocardiogram were used to evaluate the PD effect of AP30663. Data were analyzed with a repeated measure analysis of covariance, noncompartmental analysis, and concentration-effect analysis. In total, 33 of 34 adverse events considered related to AP30663 exposure were related to the infusion site, mild in severity, and temporary in nature, although full recovery took up to 110 days. After formulation and administration changes, the local infusion site reaction remained, but the median duration was shorter despite higher dose levels. AP30663 displayed a less than dose proportional increase in peak plasma concentration (Cmax) and a terminal half-life of around 5 hours. In healthy volunteers, no effect of AP30663 was observed on electrocardiographic parameters, other than a concentration-dependent effect on the corrected QT Fridericia’s formula interval (+18.8 ± 4.3 ms for the highest dose level compared with time matched placebo). In conclusion, administration of AP30663, a novel KCa2 channel inhibitor, was safe and well-tolerated systemically in humans, supporting further development in patients with AF undergoing cardioversion

    Relationships Between Type 2 Diabetes, Neuropathy, and Microvascular Dysfunction : Evidence From Patients With Cryptogenic Axonal Polyneuropathy

    No full text
    OBJECTIVE: This study investigated whether the relationship between neuropathy and microvascular dysfunction in patients with type 2 diabetes is independent of diabetes-related factors. For this purpose, we compared skin microvascular function in patients with type 2 diabetes with that of patients with cryptogenic axonal polyneuropathy (CAP), a polyneuropathy of unknown etiology. RESEARCH DESIGN AND METHODS: Cross-sectional information was collected from 16 healthy controls (HCs), 16 patients with CAP, 15 patients with type 2 diabetes with polyneuropathy (DPN), and 11 patients with type 2 diabetes without polyneuropathy. Axonal degeneration was assessed with skin biopsy and nerve conduction studies. Microvascular skin vasodilation was measured using laser Doppler fluxmetry combined with iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). RESULTS: Patients with CAP and DPN demonstrated a similar decrease in intraepidermal nerve fiber density and sural sensory nerve action potential compared with HCs. The vasodilator response to ACh was similar among patients with CAP (relative mean difference based on log values 13.3%; 95% CI -35.0 to 97.7%; P = 0.652) but was lower in the patients with diabetes with neuropathy (157.5%; 42.0-366.7%; P = 0.003) and without neuropathy (174.2%; 44.2-421.3%; P = 0.003) compared with HCs. No significant differences were found between the groups of patients with diabetes (P = 0.845). The vasodilator response to SNP was not significantly different among the groups (P = 0.082). CONCLUSIONS: In this study, endothelium-dependent vasodilation was reduced in patients with type 2 diabetes regardless of the presence of polyneuropathy, whereas microvascular vasodilation was normal in patients with CAP. These data suggest that in type 2 diabetes, neuropathy does not contribute to impaired microvascular endothelium-dependent vasodilation and vice versa. In addition, this study suggests that impaired microvascular vasodilation does not contribute to CAP
    corecore