19 research outputs found
Les effets de l’exercice physique sur le stress oxydant et l’inflammation dans les maladies vasculaires
Sickle cell disease (SCD) and atherosclerosis are two very different and distinct diseases thatshare similar underlying characteristics. Sickle cell disease is a hemoglobinopathycharacterized by a genetic mutation which causes the normal blood cells to become rigid andweak. The resulting pathophysiological effects, including sickling, vaso-occlusion, andadhesion, involve the production of oxidative stress and inflammation. Atherosclerosis is achronic inflammatory disease that is characterized by plaque buildup within the vessel walls.An initial step in the pathogenesis of this disease involves the oxidation of lipids, which notonly produces inflammation, but more oxidative stress as well. We sought to determine howthe control of oxidative stress and inflammation could ameliorate complications stemmingfrom the disease.Exercise training is an important mechanism for the beneficial modulation oxidative stressand inflammation through several adaptive pathways: antioxidants, shear stress, vasodilation,and anti-inflammatory cytokines. The purpose of this thesis was to determine if thesebeneficial effects of exercise training could improve oxidative stress and consequentlyinflammation in sickle cell trait (SCT) and atherosclerosis.La drépanocytose (SCD) et l’athérosclérose sont deux maladies très diffèrentes et distinctesqui partagent les même caractéristiques. La drépanocytose est une maladie autosomalerécessive appartenant à la classe des hémoglobinopathies causée par la mutation del’hémoglobine (Hb) A en HbS. En réponse à des stress physiques tels que l’hypoxie,l’acidose, la déshydratation ou l’hyperthermie, HbS devient plus vulnérable à lapolymérisation et favorise le processus de falciformation des globules rouges. La répétitiondes cycles de polymérisation et dépolymérisation de HbS altère la forme saine desérythrocytes et conduisent aux manifestations cliniques principales de la drépanocytose:anémie, épisodes vaso-occlusifs aigus et crises hémolytiques. Il est aujourd’hui largementadmis que le stress oxydatif et l’inflammation jouent un rôle majeur dans la pathogènèse et lesconséquences physiopathologiques de la drépanocytose. L’athérosclérose, quant à elle, estune maladie inflammatoire chronique qui se caractérise par l’accumulation de plaques à l’intérieur des parois vasculaires au niveau de l’endothélium. Le stress oxydatif et la mise enjeu de phénomènes inflamatoires sont impliqués dans l’oxydation des lipides de faible densité(LDL), étape essentielle dans la pathogenèse de cette maladie.D’autre part, l’activité physique est un mécanisme important de modulation bénéfique dustress oxydatif et de l'inflammation au travers de plusieurs voies d'adaptation : l’améliorationdes enzymes antioxydantes, de la vasodilatation et des cytokines anti-inflammatoires, et labaisse des contraintes de cisaillement. Nous avons donc cherché à déterminer dans ce travailde thèse comment le contrôle du stress oxydatif et de l’inflammation par l’activité physiquepourrait réduire les complications de ces 2 pathologies (SCD et athérosclérose)
Role of oxidative stress in the pathogenesis of sickle cell disease
International audienc
Small-Sided Games Versus Interval Training in Amateur Soccer Players
International audienc
Cyclooxygenase-2 Inhibition Limits Angiotensin II-Induced DNA Oxidation and Protein Nitration in Humans
International audienc
Pulmonary arterial systolic pressure and susceptibility to high altitude pulmonary edema
International audienceThere is evidence that pulmonary arterial hypertension plays a major role in the occurrence of high altitude pulmonary edema (HAPE). We tested the hypothesis that the pulmonary arterial systolic pressure response to a challenge associated with hypoxia and mild exercise may be considered a predictive factor of HAPE. Pulmonary arterial systolic pressure was measured by Doppler echocardiography in 8 HAPE susceptible (HAPE-S) subjects and 8 HAPE resistant mountaineers (HAPE-R) during a hypoxic exercise challenge established by the French Association for Sport Medicine (Richalet's test). Pulmonary arterial systolic pressure during hypoxic exercise allowed a significant discrimination between the groups, although an overlap of values was observed. When expressed as individual variations from baseline to hypoxic exercise level however, we found a highly significant difference. No overlap was observed between HAPE-R (range: 6.7-18.5 mmHg) and HAPE-S (range: 19.2-30.4 mmHg) groups, with a cut-off value at 19 mmHg. Plasma Vascular Endothelial growth factor (VEGF) and malondialdehyde (MDA) increased in response to hypoxic exercise only in HAPE-S group. Individual increases in pulmonary arterial systolic pressure during hypoxic exercise from basal resting normoxic values seem relevant to estimate HAPE susceptibility when measured during the Richalet's test
Oxidative stress is decreased in physically active sickle cell SAD mice
International audienc
Magnetic resonance imaging biomarkers of exercise-induced improvement of oxidative stress and inflammation in the brain of old high-fat-fed ApoE-/- mice
International audienceVascular brain lesions, present in advanced atherosclerosis, share pathological hallmarks with peripheral vascular lesions, such as increased inflammation and oxidative stress. Physical activity reduces these peripheral risk factors, but its cerebrovascular effect is less documented, especially by non-invasive imaging. Through a combination of in vivo and post-mortem techniques, we aimed to characterize vascular brain damage in old ApoE-/- mice fed a high-cholesterol (HC) diet with dietary controlled intake. We then sought to determine the beneficial effects of exercise training on oxidative stress and inflammation in the brain as a treatment option in an ageing atherosclerosis mouse model. Using in vivo magnetic resonance imaging (MRI) and biological markers of oxidative stress and inflammation, we evaluated the occurrence of vascular abnormalities in the brain of HC-diet fed ApoE-/- mice \textgreater70 weeks old, its association with local and systemic oxidative stress and inflammation, and whether both can be modulated by exercise. Exercise training significantly reduced both MRI-detected abnormalities (present in 71% of untrained vs. 14% of trained mice) and oxidative stress (lipid peroxidation, 9.1 +/- 1.4 vs. 5.2 +/- 0.9 mumol mg-1 ; P \textless 0.01) and inflammation (interleukin-1beta, 226.8 +/- 27.1 vs. 182.5 +/- 21.5 pg mg-1 ; P \textless 0.05) in the brain, and the mortality rate. Exercise also decreased peripheral insulin resistance, oxidative stress and inflammation, but significant associations were seen only within brain markers. Highly localized vascular brain damage is a frequent finding in this ageing atherosclerosis model, and exercise is able to reduce this outcome and improve lifespan. In vivo MRI evaluated both the neurovascular damage and the protective effect of exercise
Exercise training blunts oxidative stress in sickle cell trait carriers
International audienc
Exercise Does Not Protect against Peripheral and Central Effects of a High Cholesterol Diet Given Ad libitum in Old ApoE-/- Mice
International audienceAim: Advanced atherosclerosis increases inflammation and stroke risk in the cerebral vasculature. Exercise is known to improve cardio-metabolic profiles when associated with a caloric restriction, but it remains debated whether it is still beneficial without the dietary control. The aim of this study was to determine both the peripheral and central effects of exercise training combined with a cholesterol-rich diet given ad libitum in old ApoE-/- mice. Methods: Forty-five-weeks old obese ApoE-/- mice fed with a high cholesterol diet ad libitum were divided into Exercise-trained (EX; running wheel free access) and Sedentary (SED) groups. Insulin tolerance and brain imaging were performed before and after the twelve-weeks training. Tissue insulin resistance, oxidative stress, and inflammation markers in plasma, aorta, and brain were then assessed. Results: In EX ApoE-/- mice, no beneficial effect of exercise was observed on weight, abdominal fat, metabolic parameters, oxidative stress, or inflammation compared to SED. Despite the regular exercise training in ApoE-/- EX mice (mean of 12.5 km/week during 12 weeks), brain inflammation imaging score was significantly associated with increased blood brain barrier (BBB) leakage evaluated by imaging follow-up (r2 = 0.87; p = 0.049) with a faster evolution compared to SED ApoE-/-mice. Conclusion: We conclude that in a context of high cardio-metabolic risk, exercise does not provide any protective effect in old ApoE-/- animals under high cholesterol diet given ad libitum. Peripheral (insulin sensitivity and oxidative/inflammatory status) but also central features (BBB preservation and protection against inflammation) did not show any benefits of exercise. Indeed, there was a fast induction of irreversible brain damage that was more pronounced in exercise-trained ApoE-/- mice