217 research outputs found

    Osteoporosis in Men

    Get PDF

    Protein co-expression network analysis (ProCoNA)

    Get PDF
    Abstract Background Biological networks are important for elucidating disease etiology due to their ability to model complex high dimensional data and biological systems. Proteomics provides a critical data source for such models, but currently lacks robust de novo methods for network construction, which could bring important insights in systems biology. Results We have evaluated the construction of network models using methods derived from weighted gene co-expression network analysis (WGCNA). We show that approximately scale-free peptide networks, composed of statistically significant modules, are feasible and biologically meaningful using two mouse lung experiments and one human plasma experiment. Within each network, peptides derived from the same protein are shown to have a statistically higher topological overlap and concordance in abundance, which is potentially important for inferring protein abundance. The module representatives, called eigenpeptides, correlate significantly with biological phenotypes. Furthermore, within modules, we find significant enrichment for biological function and known interactions (gene ontology and protein-protein interactions). Conclusions Biological networks are important tools in the analysis of complex systems. In this paper we evaluate the application of weighted co-expression network analysis to quantitative proteomics data. Protein co-expression networks allow novel approaches for biological interpretation, quality control, inference of protein abundance, a framework for potentially resolving degenerate peptide-protein mappings, and a biomarker signature discovery

    Evidence for Geographical and Racial Variation in Serum Sex Steroid Levels in Older Men.

    Get PDF
    Background: Despite considerable racial and geographical differences in human phenotypes and in the incidence of diseases that may be associated with sex steroid action, there are few data concerning variation in sex steroid levels among populations. We designed an international study to determine the degree to which geography and race influence sex steroid levels in older men. Methods: Using mass spectrometry, concentrations of serum androgens, estrogens, and sex steroid precursors/metabolites were measured in 5003 older men from five countries. SHBG levels were assessed using radioimmunoassay. Results: There was substantial geographical variation in the levels of sex steroids, precursors, and metabolites, as well as SHBG. For instance, Asian men in Hong Kong and Japan, but not in the United States, had levels of total testosterone approximately 20% higher than in other groups. Even greater variation was present in levels of estradiol, SHBG, and dihydrotestosterone. Group differences in body mass index did not explain most geographical differences. In addition, body mass index-independent racial differences were present; Black men had higher levels of estrogens (estradiol, estrone), and Asian men had lower levels of glucuronidated androgen metabolites. Conclusions: On a global scale, there are important geographical and racial differences in the concentrations of serum sex steroids and SHBG in older men

    Free 25-Hydroxyvitamin D: Impact of Vitamin D Binding Protein Assays on Racial-Genotypic Associations

    Get PDF
    Context: Total 25-hydroxyvitamin D (25OHD) is a marker of vitamin D status and is lower in African Americans than in whites. Whether this difference holds for free 25OHOD (f25OHD) is unclear, considering reported genetic-racial differences in vitamin D binding protein (DBP) used to calculate f25OHD.  Objectives: Our objective was to assess racial-geographic differences in f25OHD and to understand inconsistencies in racial associations with DBP and calculated f25OHD.  Design: This study used a cross-sectional design.  Setting: The general community in the United States, United Kingdom, and The Gambia were included in this study.  Participants: Men in Osteoporotic Fractures in Men and Medical Research Council studies (N = 1057) were included.  Exposures: Total 25OHD concentration, race, and DBP (GC) genotype exposures were included.  Outcome Measures: Directly measured f25OHD, DBP assessed by proteomics, monoclonal and polyclonal immunoassays, and calculated f25OHD were the outcome measures.  Results: Total 25OHD correlated strongly with directly measured f25OHD (Spearman r = 0.84). Measured by monoclonal assay, mean DBP in African-ancestry subjects was approximately 50% lower than in whites, whereas DBP measured by polyclonal DBP antibodies or proteomic methods was not lower in African-ancestry. Calculated f25OHD (using polyclonal DBP assays) correlated strongly with directly measured f25OHD (r = 0.80–0.83). Free 25OHD, measured or calculated from polyclonal DBP assays, reflected total 25OHD concentration irrespective of race and was lower in African Americans than in US whites.  Conclusions: Previously reported racial differences in DBP concentration are likely from monoclonal assay bias, as there was no racial difference in DBP concentration by other methods. This confirms the poor vitamin D status of many African-Americans and the utility of total 25OHD in assessing vitamin D in the general population

    Candidate Gene Analysis of Femoral Neck Trabecular and Cortical Volumetric Bone Mineral Density in Older Men

    Get PDF
    In contrast to conventional dual-energy X-ray absorptiometry, quantitative computed tomography separately measures trabecular and cortical volumetric bone mineral density (vBMD). Little is known about the genetic variants associated with trabecular and cortical vBMD in humans, although both may be important for determining bone strength and osteoporotic risk. In the current analysis, we tested the hypothesis that there are genetic variants associated with trabecular and cortical vBMD at the femoral neck by genotyping 4608 tagging and potentially functional single-nucleotide polymorphisms (SNPs) in 383 bone metabolism candidate genes in 822 Caucasian men aged 65 years or older from the Osteoporotic Fractures in Men Study (MrOS). Promising SNP associations then were tested for replication in an additional 1155 men from the same study. We identified SNPs in five genes (IFNAR2, NFATC1, SMAD1, HOXA, and KLF10) that were robustly associated with cortical vBMD and SNPs in nine genes (APC, ATF2, BMP3, BMP7, FGF18, FLT1, TGFB3, THRB, and RUNX1) that were robustly associated with trabecular vBMD. There was no overlap between genes associated with cortical vBMD and trabecular vBMD. These findings identify novel genetic variants for cortical and trabecular vBMD and raise the possibility that some genetic loci may be unique for each bone compartment. © 2010 American Society for Bone and Mineral Researc
    corecore