31 research outputs found

    Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency

    Get PDF
    Acyl-CoA dehydrogenase 9 (ACAD9) is an assembly factor for mitochondrial respiratory chain Complex I (CI), and ACAD9 mutations are recognized as a frequent cause of CI deficiency. ACAD9 also retains enzyme ACAD activity for long-chain fatty acids in vitro, but the biological relevance of this function remains controversial partly because of the tissue specificity of ACAD9 expression: high in liver and neurons and minimal in skin fibroblasts. In this study, we hypothesized that this enzymatic ACAD activity is required for full fatty acid oxidation capacity in cells expressing high levels of ACAD9 and that loss of this function is important in determining phenotype in ACAD9-deficient patients. First, we confirmed that HEK293 cells express ACAD9 abundantly. Then, we showed that ACAD9 knockout in HEK293 cells affected long-chain fatty acid oxidation along with Cl, both of which were rescued by wild type ACAD9. Further, we evaluated whether the loss of ACAD9 enzymatic fatty acid oxidation affects clinical severity in patients with ACAD9 mutations. The effects on ACAD activity of 16 ACAD9 mutations identified in 24 patients were evaluated using a prokaryotic expression system. We showed that there was a significant inverse correlation between residual enzyme ACAD activity and phenotypic severity of ACAD9-deficient patients. These results provide evidence that in cells where it is strongly expressed, ACAD9 plays a physiological role in fatty acid oxidation, which contributes to the severity of the phenotype in ACAD9-deficient patients. Accordingly, treatment of ACAD9 patients should aim at counteracting both CI and fatty acid oxidation dysfunction

    The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues

    No full text
    That cancer cells show patterns of metabolism different from normal cells has been known for over 50 years. Yet, it is only in the past decade or so that an appreciation of the benefits of these changes has begun to emerge. Altered cancer cell metabolism was initially attributed to defective mitochondria. However, we now realize that most cancers do not have mitochondrial mutations and that normal cells can transiently adopt cancer-like metabolism during periods of rapid proliferation. Indeed, an encompassing, albeit somewhat simplified, conceptual framework to explain both normal and cancer cell metabolism rests on several simple premises. First, the metabolic pathways used by cancer cells and their normal counterparts are the same. Second, normal quiescent cells use their metabolic pathways and the energy they generate largely to maintain cellular health and organelle turnover and, in some cases, to provide secreted products necessary for the survival of the intact organism. By contrast, undifferentiated cancer cells minimize the latter functions and devote their energy to producing the anabolic substrates necessary to maintain high rates of unremitting cellular proliferation. Third, as a result of the uncontrolled proliferation of cancer cells, a larger fraction of the metabolic intermediates normally used by quiescent cells purely as a source of energy are instead channeled into competing proliferation-focused and energy-consuming anabolic pathways. Fourth, cancer cell clones with the most plastic and rapidly adaptable metabolism will eventually outcompete their less well-adapted brethren during tumor progression and evolution. This attribute becomes increasingly important as tumors grow and as their individual cells compete in a constantly changing and inimical environment marked by nutrient, oxygen, and growth factor deficits. Here, we review some of the metabolic pathways whose importance has gained center stage for tumor growth, particularly those under the control of the c-Myc (Myc) oncoprotein. We discuss how these pathways differ functionally between quiescent and proliferating normal cells, how they are kidnapped and corrupted during the course of transformation, and consider potential therapeutic strategies that take advantage of common features of neoplastic and metabolic disorders

    A Novel Transgenic Mouse Model Implicates <i>Sirt2</i> as a Promoter of Hepatocellular Carcinoma

    No full text
    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths globally. Incidence rates are steadily increasing, creating an unmet need for new therapeutic options. Recently, the inhibition of sirtuin-2 (Sirt2) was proposed as a potential treatment for HCC, despite contradictory findings of its role as both a tumor promoter and suppressor in vitro. Sirt2 functions as a lysine deacetylase enzyme. However, little is known about its biological influence, despite its implication in several age-related diseases. This study evaluated Sirt2’s role in HCC in vivo using an inducible c-MYC transgene in Sirt2+/+ and Sirt2−/− mice. Sirt2−/− HCC mice had smaller, less proliferative, and more differentiated liver tumors, suggesting that Sirt2 functions as a tumor promoter in this context. Furthermore, Sirt2−/− HCCs had significantly less c-MYC oncoprotein and reduction in c-MYC nuclear localization. The RNA-seq showed that only three genes were significantly dysregulated due to loss of Sirt2, suggesting the underlying mechanism is due to Sirt2-mediated changes in the acetylome, and that the therapeutic inhibition of Sirt2 would not perturb the oncogenic transcriptome. The findings of this study suggest that Sirt2 inhibition could be a promising molecular target for slowing HCC growth

    VLCAD from SIRT3 and SIRT5 knockout mice shows reduced affinity for cardiolipin.

    No full text
    <p>A) The fat blot method was used to evaluate endogenous VLCAD binding to cardiolipin in fasted (20 hr) mouse liver lysates. B) Densitometry was used to quantify binding from panel A. C) Lysate from VLCAD-/- liver was tested as a negative control and shows no detectable signal. D) Western blot was used to confirm that total VLCAD expression is not significantly different between wild-type, SIRT3 KO, and SIRT5 KO mice.</p

    SIRT3 and SIRT5 deacylate lysines that localize to the active site and putative membrane binding domain of VLCAD.

    No full text
    <p>K299 (red) hydrogen bonds with neighboring S304 (green), and both are within interacting distance of the essential FAD cofactor (yellow) which is non-covalently bound in the VLCAD active site. B) Amino acid alignment of the region surrounding K299, showing conservation of this residue across diverse species. C) The portion of VLCAD spanning residues 486–518, which includes sirtuin target sites K492 and K507, is disordered in the crystal structure. PsiPred was used to generate a model of the disordered segment which was overlaid upon the structure of a VLCAD monomer. Hydrophobic residues are rendered red, positively charged residues blue, and negatively charged residues green. The active site is indicated as FAD in yellow and acyl-CoA substrate in red. D) Amino acid alignment of the putative membrane-binding amphipathic helix.</p

    SIRT3 and SIRT5 deacylate VLCAD at overlapping sites.

    No full text
    <p>A) Recombinant, unmodified VLCAD (Ctrl) was subjected to chemical succinylation (top) or acetylation (bottom) which was verified by western blotting with anti-succinyllysine (SuK) or anti-acetyllysine (AcK) antibodies. B) Chemically succinylated (Suc) and acetylated (Ac) VLCAD proteins were reacted with SIRT5 and SIRT3, respectively. Changes in succinylation or acetylation were then evaluated by western blotting, with anti-His blotting as loading control. C) Only SIRT3 reacts with chemically acetylated VLCAD as determined by incubating increasing amounts of acetylated VLCAD with SIRT3, SIRT4, or SIRT5 in the presence of radiolabeled NAD+. Shown are the means of duplicate assays. D) Acetylated VLCAD was treated with SIRT3 or inactive mutant SIRT3 (Control). Quantitative mass spectrometry was used to determine the relative abundance of acetylated peptides. Shown are acetylation sites with >2-fold change. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0122297#pone.0122297.s001" target="_blank">S1 Dataset</a> for details. E) Succinylated VLCAD was treated with SIRT5 or inactive mutant SIRT5 (Control) and succinylated peptides were quantified by mass spectrometry. Shown are succinylation sites with >2-fold change. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0122297#pone.0122297.s002" target="_blank">S2 Dataset</a> for details. D and E both depict the means and standard deviations of quadruplicate assays.</p
    corecore