447 research outputs found
Structural Evolution of Early-type Galaxies to z=2.5 in CANDELS
Projected axis ratio measurements of 880 early-type galaxies at redshifts
1<z<2.5 selected from CANDELS are used to reconstruct and model their intrinsic
shapes. The sample is selected on the basis of multiple rest-frame colors to
reflect low star-formation activity. We demonstrate that these galaxies as an
ensemble are dust-poor and transparent and therefore likely have smooth light
profiles, similar to visually classified early-type galaxies. Similar to their
present-day counterparts, the z>1 early-type galaxies show a variety of
intrinsic shapes; even at a fixed mass, the projected axis ratio distributions
cannot be explained by the random projection of a set of galaxies with very
similar intrinsic shapes. However, a two-population model for the intrinsic
shapes, consisting of a triaxial, fairly round population, combined with a flat
(c/a~0.3) oblate population, adequately describes the projected axis ratio
distributions of both present-day and z>1 early-type galaxies. We find that the
proportion of oblate versus triaxial galaxies depends both on the galaxies'
stellar mass, and - at a given mass - on redshift. For present-day and z<1
early-type galaxies the oblate fraction strongly depends on galaxy mass. At z>1
this trend is much weaker over the mass range explored here
(10^10<M*/M_sun<10^11), because the oblate fraction among massive (M*~10^11
M_sun) was much higher in the past: 0.59+-0.10 at z>1, compared to 0.20+-0.02
at z~0.1. In contrast, the oblate fraction among low-mass early-type galaxies
(log(M*/M_sun)1 to
0.72+-0.06 at z=0. [Abridged]Comment: accepted for publication in ApJ; 14 pages; 10 figures; 4 table
Misplaced Cervical Screws Requiring Reoperation.
STUDY DESIGN: A multicenter, retrospective case series.
OBJECTIVE: In the past several years, screw fixation of the cervical spine has become commonplace. For the most part, this is a safe, low-risk procedure. While rare, screw backout or misplaced screws can lead to morbidity and increased costs. We report our experiences with this uncommon complication.
METHODS: A multicenter, retrospective case series was undertaken at 23 institutions in the United States. Patients were included who underwent cervical spine surgery from January 1, 2005, to December 31, 2011, and had misplacement of screws requiring reoperation. Institutional review board approval was obtained at all participating institutions, and detailed records were sent to a central data center.
RESULTS: A total of 12 903 patients met the inclusion criteria and were analyzed. There were 11 instances of screw backout requiring reoperation, for an incidence of 0.085%. There were 7 posterior procedures. Importantly, there were no changes in the health-related quality-of-life metrics due to this complication. There were no new neurologic deficits; a patient most often presented with pain, and misplacement was diagnosed on plain X-ray or computed tomography scan. The most common location for screw backout was C6 (36%).
CONCLUSIONS: This study represents the largest series to tabulate the incidence of misplacement of screws following cervical spine surgery, which led to revision procedures. The data suggest this is a rare event, despite the widespread use of cervical fixation. Patients suffering this complication can require revision, but do not usually suffer neurologic sequelae. These patients have increased cost of care. Meticulous technique and thorough knowledge of the relevant anatomy are the best means of preventing this complication
Limited Durability of Viral Control following Treated Acute HIV Infection
BACKGROUND: Early treatment of acute HIV infection with highly active antiretroviral therapy, followed by supervised treatment interruption (STI), has been associated with at least transient control of viremia. However, the durability of such control remains unclear. Here we present longitudinal follow-up of a single-arm, open-label study assessing the impact of STI in the setting of acute HIV-1 infection. METHODS AND FINDINGS: Fourteen patients were treated during acute HIV-1 infection and subsequently subjected to an STI protocol that required retreatment if viral load exceeded 50,000 RNA copies/ml plasma or remained above 5,000 copies/ml for more than three consecutive weeks. Eleven of 14 (79%) patients were able to achieve viral loads of less than 5,000 RNA copies/ml for at least 90 d following one, two, or three interruptions of treatment. However, a gradual increase in viremia and decline in CD4+ T cell counts was observed in most individuals. By an intention-to-treat analysis, eight (57%), six (43%), and three (21%) of 14 patients achieved a maximal period of control of 180, 360, and 720 d, respectively, despite augmentation of HIV-specific CD4+ and CD8+ T cell responses. The magnitude of HIV-1-specific cellular immune responses before treatment interruption did not predict duration of viremia control. The small sample size and lack of concurrent untreated controls preclude assessment of possible clinical benefit despite failure to control viremia by study criteria. CONCLUSIONS: These data indicate that despite initial control of viremia, durable viral control to less than 5,000 RNA copies/ml plasma in patients following treated acute HIV-1 infection occurs infrequently. Determination of whether early treatment leads to overall clinical benefit will require a larger and randomized clinical trial. These data may be relevant to current efforts to develop an HIV-1 vaccine designed to retard disease progression rather than prevent infection since they indicate that durable maintenance of low-level viremia may be difficult to achieve
Near-Infrared Molecular Hydrogen Emission from the Central Regions of Galaxies: Regulated Physical Conditions in the Interstellar Medium
The central regions of many interacting and early-type spiral galaxies are
actively forming stars. This process affects the physical and chemical
properties of the local interstellar medium as well as the evolution of the
galaxies. We observed near-infrared H2 emission lines: v=1-0 S(1), 3-2 S(3),
1-0 S(0), and 2-1 S(1) from the central ~1 kpc regions of the archetypical
starburst galaxies, M82 and NGC 253, and the less dramatic but still vigorously
star-forming galaxies, NGC 6946 and IC 342. Like the far-infrared continuum
luminosity, the near-infrared H2 emission luminosity can directly trace the
amount of star formation activity because the H2 emission lines arise from the
interaction between hot and young stars and nearby neutral clouds. The observed
H2 line ratios show that both thermal and non-thermal excitation are
responsible for the emission lines, but that the great majority of the
near-infrared H2 line emission in these galaxies arises from energy states
excited by ultraviolet fluorescence. The derived physical conditions, e.g.,
far-ultraviolet radiation field and gas density, from [C II] and [O I] lines
and far-infrared continuum observations when used as inputs to
photodissociation models, also explain the luminosity of the observed H2 v=1-0
S(1) line. The ratio of the H2 v=1-0 S(1) line to far-IR continuum luminosity
is remarkably constant over a broad range of galaxy luminosities; L_H2/L_FIR =
about 10^{-5}, in normal late-type galaxies (including the Galactic center), in
nearby starburst galaxies, and in luminous IR galaxies (LIRGs: L_FIR > 10^{11}
L_sun). Examining this constant ratio in the context of photodissociation
region models, we conclude that it implies that the strength of the incident UV
field on typical molecular clouds follows the gas density at the cloud surface.Comment: Accepted for ApJ, 24 pages, 17 figures, for complete PDF file, see
http://kao.re.kr/~soojong/mypaper/2004_pak_egh2.pd
Integrating microbial ecology into ecosystem models: challenges and priorities
Microbial communities can potentially mediate feedbacks between global change and ecosystem function, owing to their sensitivity to environmental change and their control over critical biogeochemical processes. Numerous ecosystem models have been developed to predict global change effects, but most do not consider microbial mechanisms in detail. In this idea paper, we examine the extent to which incorporation of microbial ecology into ecosystem models improves predictions of carbon (C) dynamics under warming, changes in precipitation regime, and anthropogenic nitrogen (N) enrichment. We focus on three cases in which this approach might be especially valuable: temporal dynamics in microbial responses to environmental change, variation in ecological function within microbial communities, and N effects on microbial activity. Four microbially-based models have addressed these scenarios. In each case, predictions of the microbial-based models differ—sometimes substantially—from comparable conventional models. However, validation and parameterization of model performance is challenging. We recommend that the development of microbial-based models must occur in conjunction with the development of theoretical frameworks that predict the temporal responses of microbial communities, the phylogenetic distribution of microbial functions, and the response of microbes to N enrichment
Cardiac Substructure Radiation Dose and Risk of Late Cardiac Disease in Survivors of Childhood Cancer: A Report From the Childhood Cancer Survivor Study
PURPOSE: Radiation-associated cardiac disease is a major cause of morbidity/mortality among childhood cancer survivors. Radiation dose-response relationships for cardiac substructures and cardiac diseases remain unestablished.
METHODS: Using the 25,481 5-year survivors of childhood cancer treated from 1970 to 1999 in the Childhood Cancer Survivor Study, we evaluated coronary artery disease (CAD), heart failure (HF), valvular disease (VD), and arrhythmia. We reconstructed radiation doses for each survivor to the coronary arteries, chambers, valves, and whole heart. Excess relative rate (ERR) models and piecewise exponential models evaluated dose-response relationships.
RESULTS: The cumulative incidence 35 years from diagnosis was 3.9% (95% CI, 3.4 to 4.3) for CAD, 3.8% (95% CI, 3.4 to 4.2) for HF, 1.2% (95% CI, 1.0 to 1.5) for VD, and 1.4% (95% CI, 1.1 to 1.6) for arrhythmia. A total of 12,288 survivors (48.2%) were exposed to radiotherapy. Quadratic ERR models improved fit compared with linear ERR models for the dose-response relationship between mean whole heart and CAD, HF, and arrhythmia, suggesting a potential threshold dose; however, such departure from linearity was not observed for most cardiac substructure end point dose-response relationships. Mean doses of 5-9.9 Gy to the whole heart did not increase the risk of any cardiac diseases. Mean doses of 5-9.9 Gy to the right coronary artery (rate ratio [RR], 2.6 [95% CI, 1.6 to 4.1]) and left ventricle (RR, 2.2 [95% CI, 1.3 to 3.7]) increased risk of CAD, and to the tricuspid valve (RR, 5.5 [95% CI, 2.0 to 15.1]) and right ventricle (RR, 8.4 [95% CI, 3.7 to 19.0]) increased risk of VD.
CONCLUSION: Among children with cancer, there may be no threshold dose below which radiation to the cardiac substructures does not increase the risk of cardiac diseases. This emphasizes their importance in modern treatment planning
The Origins Space Telescope: mission concept overview
The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology
Long-term safety and pharmacodynamics of mepolizumab in children with severe asthma with an eosinophilic phenotype
Background
Mepolizumab is approved for patients with severe asthma with an eosinophilic phenotype aged 12 or more (United States) or 6 or more (European Union) years, but its long-term use in children aged 6 to 11 years has not yet been assessed.
Objective
We sought to assess the long-term safety, efficacy, and pharmacodynamics of mepolizumab in children aged 6 to 11 years with severe asthma with an eosinophilic phenotype.
Methods
In this open-label, uncontrolled, repeat-dose extension study (NCT02377427), children aged 6 to 11 years with severe asthma with an eosinophilic phenotype (blood eosinophil counts ≥150 cells/μL at screening or ≥300 cells/μL in the previous year) received a body weight–dependent dose of subcutaneous mepolizumab of 40 mg (
Results
Over 52 weeks, 30 children received mepolizumab; 27 (90%) and 7 (23%) experienced on-treatment AEs and serious AEs, respectively. No serious AEs were treatment related. There were no fatal AEs. No specific patterns of AEs were evident, and no anti-drug antibody or neutralizing antibody responses were reported. Compared with baseline values, mepolizumab treatment reduced blood eosinophil counts and asthma exacerbations and improved asthma control across all treatment groups.
Conclusion
Long-term safety, pharmacodynamic, and efficacy data from this study support a positive benefit-risk profile for mepolizumab in children with severe asthma with an eosinophilic phenotype and were similar to data in studies in adults and adolescents
Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A
International audienceAims/Hypothesis: Reduced skeletal muscle insulin sensitivity is a feature associated with sustained exposure to excess saturated fatty acids (SFA), whereas mono and polyunsaturated fatty acids (MUFA and PUFA) not only improve insulin sensitivity but blunt SFA-induced insulin resistance. The mechanisms by which MUFAs and PUFAs institute these favourable changes remain unclear, but may involve stimulating insulin signalling by counter-modulation/repression of protein phosphatase 2A (PP2A). This study investigated the effects of oleic acid (OA; a MUFA), linoleic acid (LOA; a PUFA) and palmitate (PA; a SFA) in cultured myotubes and determined whether changes in insulin signalling can be attributed to PP2A regulation. Principal Findings: We treated cultured skeletal myotubes with unsaturated and saturated fatty acids and evaluated insulin signalling, phosphorylation and methylation status of the catalytic subunit of PP2A. Unlike PA, sustained incubation of rat or human myotubes with OA or LOA significantly enhanced Akt-and ERK1/2-directed insulin signalling. This was not due to heightened upstream IRS1 or PI3K signalling nor to changes in expression of proteins involved in proximal insulin signalling, but was associated with reduced dephosphorylation/inactivation of Akt and ERK1/2. Consistent with this, PA reduced PP2Ac demethylation and tyrosine 307 phosphorylation-events associated with PP2A activation. In contrast, OA and LOA strongly opposed these PA-induced changes in PP2Ac thus exerting a repressive effect on PP2A.Conclusions/Interpretation: Beneficial gains in insulin sensitivity and the ability of unsaturated fatty acids to oppose palmitate-induced insulin resistance in muscle cells may partly be accounted for by counter-modulation of PP2A
- …