22 research outputs found

    A decade of living lobar lung transplantation: recipient outcomes

    Get PDF
    AbstractObjectiveLiving lobar lung transplantation was developed as a procedure for patients considered too ill to await cadaveric transplantation.MethodsOne hundred twenty-eight living lobar lung transplantations were performed in 123 patients between 1993 and 2003. Eighty-four patients were adults (age, 27 ± 7.7 years), and 39 were pediatric patients (age, 13.9 ± 2.9 years).ResultsThe primary indication for transplantation was cystic fibrosis (84%). At the time of transplantation, 67.5% of patients were hospitalized, and 17.9% were intubated. One-, 3-, and 5-year actuarial survival among living lobar recipients was 70%, 54%, and 45%, respectively. There was no difference in actuarial survival between adult and pediatric living lobar recipients (P = .65). There were 63 deaths among living lobar recipients, with infection being the predominant cause (53.4%), followed by obliterative bronchiolitis (12.7%) and primary graft dysfunction (7.9%). The overall incidence of acute rejection was 0.8 episodes per patient. Seventy-eight percent of rejection episodes were unilateral. Age, sex, indication, donor relationship, preoperative hospitalization status, use of preoperative steroids, and HLA-A, HLA-B, and HLA-DR typing did not influence survival. However, patients on ventilators preoperatively had significantly worse outcomes (odds ratio, 3.06, P = .03; Kaplan-Meier P = .002), and those undergoing retransplantation had an increased risk of death (odds ratio, 2.50).ConclusionThese results support the continued use of living lobar lung transplantation in patients deemed unable to await a cadaveric transplantation. We consider patients undergoing retransplantations and intubated patients to be at significantly high risk because of the poor outcomes in these populations

    BAFopathies\u27 DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin-Siris and Nicolaides-Baraitser syndromes.

    Get PDF
    Coffin-Siris and Nicolaides-Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes. We show that chromosome 6q25 microdeletion syndrome, harboring ARID1B deletions, exhibits a similar CSS/NCBRS methylation profile. Specificity of this epi-signature was confirmed across a wide range of neurodevelopmental conditions including other chromatin remodeling and epigenetic machinery disorders. We demonstrate that a machine-learning model trained on this DNA methylation profile can resolve ambiguous clinical cases, reclassify those with variants of unknown significance, and identify previously undiagnosed subjects through targeted population screening

    Defect engineering of silicon with ion pulses from laser acceleration

    Get PDF
    Defect engineering is foundational to classical electronic device development and for emerging quantum devices. Here, we report on defect engineering of silicon with ion pulses from a laser accelerator in the laser intensity range of 1019 W cm−2 and ion flux levels of up to 1022 ions cm−2 s−1, about five orders of magnitude higher than conventional ion implanters. Low energy ions from plasma expansion of the laser-foil target are implanted near the surface and then diffuse into silicon samples locally pre-heated by high energy ions from the same laser-ion pulse. Silicon crystals exfoliate in the areas of highest energy deposition. Color centers, predominantly W and G-centers, form directly in response to ion pulses without a subsequent annealing step. We find that the linewidth of G-centers increases with high ion flux faster than the linewidth of W-centers, consistent with density functional theory calculations of their electronic structure. Intense ion pulses from a laser-accelerator drive materials far from equilibrium and enable direct local defect engineering and high flux doping of semiconductors.This work was supported by the Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Experiments at the BELLA Center were enabled through facilities developed by HEP and LaserNetUS. TS and JGL gratefully acknowledge support by the coordinated research project “F11020” of the International Atomic Energy Agency (IAEA). LZT and JS were supported by the Molecular Foundry, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231Peer reviewe

    Supplementary Notes - Defect engineering of silicon with ion pulses from laser acceleration

    Get PDF
    14 pages. -- Supplementary Note 1. Time lapse movie showing evaporation of the aluminum foil mask during 100 shots. -- Supplementary Note 2. Photoluminescence (PL) and Secondary Ion Mass Spectrometry (SIMS) data correlation to PL data. -- Supplementary Note 3. Details on energy deposition and heat calculations. -- Supplementary Note 4. Details on Nuclear Reaction Analysis (NRA). -- Supplementary Note 5. Details on channeling Rutherford Backscattering (ch-RBS). -- Supplementary Note 6. Supplemental material on Density Functional Theory (DFT) calculations of G and W-centers in silicon.Peer reviewe

    Laser–Solid Interaction Studies Enabled by the New Capabilities of the iP2 BELLA PW Beamline

    No full text
    The new capabilities of the short focal length, high intensity beamline, named iP2, at the BELLA Center will extend the reach of research in high energy density science, including accessing new regimes of high gradient ion acceleration and their applications. This 1 Hz system will provide an on-target peak intensity beyond 1021 W/cm2 with a temporal contrast ratio of <10−14 that will be enabled by the addition of an on-demand double plasma mirror setup. An overview of the beamline design and the main available diagnostics are presented in this paper as well as a selection of accessible research areas. As a demonstration of the iP2 beamline's capabilities, we present 3D particle-in-cell simulations of ion acceleration in the magnetic vortex acceleration regime. The simulations were performed with pure hydrogen targets and multi-species targets. Proton beams with energy up to 125 MeV and an approximately 12° full angle emission are observed as preplasma scale length and target tilt are varied. The number of accelerated protons is on the order of 109/MeV/sr for energies above 60 MeV
    corecore