180 research outputs found

    The rising cost of medical care and its effect on inflation

    Get PDF
    Medical care, Cost of ; Inflation (Finance)

    Auditory perception dominates in motor rhythm reproduction

    Get PDF
    It is commonly agreed that vision is more sensitive to spatial information, while audition is more sensitive to temporal information. When both visual and auditory information are available simultaneously, the modality appropriateness hypothesis predicts that, depending on the task, the most appropriate (i.e., reliable) modality dominates perception. While previous research mainly focused on discrepant information from different sensory inputs to scrutinize the modality appropriateness hypothesis, the current study aimed at investigating the modality appropriateness hypothesis when multimodal information was provided in a nondiscrepant and simultaneous manner. To this end, participants performed a temporal rhythm reproduction task for which the auditory modality is known to be the most appropriate. The experiment comprised an auditory (i.e., beeps), a visual (i.e., flashing dots), and an audiovisual condition (i.e., beeps and dots simultaneously). Moreover, constant as well as variable interstimulus intervals were implemented. Results revealed higher accuracy and lower variability in the auditory condition for both interstimulus interval types when compared to the visual condition. More importantly, there were no differences between the auditory and the audiovisual condition across both interstimulus interval types. This indicates that the auditory modality dominated multimodal perception in the task, whereas the visual modality was disregarded and hence did not add to reproduction performance

    Quantenoptische Zufallsgeneratoren : Methoden und Analysen

    Get PDF
    In der vorliegenden Arbeit wird untersucht, inwieweit sich quantenoptische Zufallsgeneratoren, bei denen die "Welcher-Weg-Entscheidung" einzelner Photonen am Strahlteiler bzw. Faserkoppler zur Zufallsgenerierung verwendet wird, zur Erzeugung von Zufallsbitströmen eignen. Es werden hierbei im wesentlichen vier verschiedene Varianten aufgebaut, die sich durch die eingesetzte Lichtquelle und die Realisierung des optischen Aufbaus unterscheiden, um zu erkennen, welche Detailprobleme sich beim Aufbau solcher Generatoren zeigen. Als Lichtquellen werden eine Einphotonenquelle auf Basis der parametrischen Fluoreszenz und eine Quelle, die stark abgeschwächte, gepulste Poisson-Lichtfelder abstrahlt, eingesetzt. Bei der optischen Realisierung wird jeweils einmal Freistrahl- und einmal Faseroptik für das Zufall generierende Element verwendet. Die Rohdaten-Bitströme der verschiedenen Varianten werden mit Hilfe von statistischen Verfahren untersucht, die für Tests von physikalischen Zufallsgeneratoren geeignet sind. In der Diskussion werden die verschiedenen Testverfahren hinsichtlich ihrer Eignung zum Aufdecken tieferliegender Defekte bewertet. Thermische Einflüsse auf die Rohdaten-Ströme werden dargelegt, Methoden zur Verringerung der Einflüsse angegeben und gezeigt, wie mit Hilfe von mathematischen Regularisierungsverfahren ideale Bitströme aus den Rohdaten erzeugt werden können. Anhand von (mehrstufigen) Autokorrelationskoeffiziententests werden die Auswirkungen von Problemen mit verschiedenen Datenaufnahme-Elektroniken auf die Rohdaten- Ströme analysiert. Die Ursachen der Probleme werden diskutiert, mögliche Lösungen, wie sich die Probleme stark verringern bzw. vermeiden lassen, werden vorgeschlagen und experimentell untersucht. Die Einflüsse der Eigenschaften der verwendeten Photonenquellen im Zusammenspiel mit den verwendeten optischen Komponenten und Detektoren werden analysiert und ihre Auswirkungen auf die Zufallsgenerierung diskutiert. Zur Erhöhung der Ausgangbitrate quantenoptischer Zufallsgeneratoren werden verschiedene Ausführungen von Mehrfachzufallsgeneratoren vorgeschlagen, insbesondere für den quantenoptischen Zufallsgenerator auf Basis der parametrischen Fluoreszenz. Als weitere, interessante Variante eines quantenoptischen Zufallsgenerators wird das theoretische Konzept für den "HOM-Generator" präsentiert, bei dem beide Photonen eines Photonenpaares bei einer gemeinsamen "Welcher-Weg-Entscheidung" zur Zufallsgenerierung verwendet werden. Die vorgeschlagenen Varianten quantenoptischer Zufallsgeneratoren werden hinsichtlich ihrer Eignung für einen praktischen Einsatz diskutiert und bewertet. Für den Dauereinsatz quantenoptischer Zufallsgeneratoren als Komponente in Sicherheitsinfrastrukturen, wie z.B. Trustcentern, werden Optimierungen, Möglichkeiten der Kostenreduzierung und weitere Aufbauvarianten vorgeschlagen. Die Optimierungen werden hinsichtlich ihrer Praxistauglichkeit diskutiert und gewertet. Mögliche Angriffe auf quantenoptische Zufallsgeneratoren werden diskutiert und zur Erkennung von Manipulationen an physikalischen Zufallsgeneratoren werden verschiedene Möglichkeiten vorgestellt, um künstliche Signaturen einzufügen, sie vor Verwendung der Zufallsdaten zu verifizieren und aus dem Zufallsstrom zu entfernen

    A Lower-Class Advantage in Face Memory

    Get PDF
    People remember what they deem important. In line with research suggesting that lower-class (vs. higher class) individuals spontaneously appraise other people as more relevant, we show that social class is associated with the habitual use of face memory. We find that lower-class (vs. higher class) participants exhibit better incidental memory for faces (i.e., spontaneous memory for faces they had not been instructed to memorize; Studies 1 and 2). No social-class differences emerge for faces participants are instructed to learn (Study 2), suggesting that this pattern reflects class-based relevance appraisals rather than memory ability. Study 3 extends our findings to eyewitness identification. Lower-class (vs. higher-class) participants’ eyewitness accuracy is less impacted by the explicit relevance of a target (clearly relevant thief vs. incidental bystander). Integrative data analysis shows a robust negative association between social class and spontaneous face memory. Preregistration (Studies 1 and 3) and cross-cultural replication (Study 2) further strengthen the results.Division of Behavioral and Cognitive Sciences https://doi.org/10.13039/100000169Peer Reviewe

    Polymorphic Encryption and Pseudonymisation for Personalised Healthcare

    Get PDF
    Polymorphic encryption and Pseudonymisation, abbreviated as PEP, form a novel approach for the management of sensitive personal data, especially in health care. Traditional encryption is rather rigid: once encrypted, only one key can be used to decrypt the data. This rigidity is becoming an every greater problem in the context of big data analytics, where different parties who wish to investigate part of an encrypted data set all need the one key for decryption. Polymorphic encryption is a new cryptographic technique that solves these problems. Together with the associated technique of polymorphic pseudonymisation new security and privacy guarantees can be given which are essential in areas such as (personalised) healthcare, medical data collection via self-measurement apps, and more generally in privacy-friendly identity management and data analytics. The key ideas of polymorphic encryption are: 1. Directly after generation, data can be encrypted in a `polymorphic\u27 manner and stored at a (cloud) storage facility in such a way that the storage provider cannot get access. Crucially, there is no need to a priori fix who gets to see the data, so that the data can immediately be protected. For instance a PEP-enabled self-measurement device will store all its measurement data in polymorphically encrypted form in a back-end data base. 2. Later on it can be decided who can decrypt the data. This decision will be made on the basis of a policy, in which the data subject should play a key role. The user of the PEP-enabled device can, for instance, decide that doctors X,Y,ZX,Y,Z may at some stage decrypt to use the data in their diagnosis, or medical researcher groups A,B,CA, B, C may use it for their investigations, or third parties U,V,WU,V,W may use it for additional services, etc. 3. This `tweaking\u27 of the encrypted data to make it decryptable by a specific party can be done in a blind manner. It will have to be done by a trusted party who knows how to tweak the ciphertext for whom. This PEP technology can provide the necessary security and privacy infrastructure for big data analytics. People can entrust their data in polymorphically encrypted form, and each time decide later to make (parts of) it available (decryptable) for specific parties, for specific analysis purposes. In this way users remain in control, and can monitor which of their data is used where by whom for which purposes. The polymorphic encryption infrastructure can be supplemented with a pseudonymisation infrastructure which is also polymorphic, and guarantees that each individual will automatically have different pseudonyms at different parties and can only be de-pseudonymised by participants (like medical doctors) who know the original identity. This white paper provides an introduction to Polymorphic Encryption and Pseudonymisation (PEP), at different levels of abstraction, focusing on health care as application area. It contains a general description of PEP, explaining the basic functionality for laymen, supplemented by a clarification of the legal framework provided by the upcoming General Data Protection Regulation (GDPR) of the European Union. The paper also contains a more advanced, mathematically oriented description of PEP, including the underlying cryptographic primitives, key and pseudonym managment, interaction protocols, etc. This second part is aimed at readers with a background in computer security and cryptography. The cryptographic basis for PEP is ElGamal public key encryption, which is well-known since the mid 1980s. It is the way in which this encryption is used --- with re-randomisation, re-keying and re-shuffling --- that is new. The PEP framework is currently elaborated into an open design and open source (prototype) implementation at Radboud University in Nijmegen, The Netherlands. The technology will be used and tested in a real-life medical research project at the Radboud University Medical Center

    A Public, K-Selected, Optical-to-Near-Infrared Catalog of the Extended Chandra Deep Field South (ECDFS) from the MUltiwavelength Survey by Yale-Chile (MUSYC)

    Full text link
    We present a new K-selected, optical-to-near-infrared photometric catalog of the Extended Chandra Deep Field South (ECDFS), making it publicly available to the astronomical community. The dataset is founded on publicly available imaging, supplemented by original zJK imaging data obtained as part of the MUltiwavelength Survey by Yale-Chile (MUSYC). The final photometric catalog consists of photometry derived from nine band U-K imaging covering the full 0.5x0.5 sq. deg. of the ECDFS, plus H band data for approximately 80% of the field. The 5sigma flux limit for point-sources is K = 22.0 (AB). This is also the nominal completeness and reliability limit of the catalog: the empirical completeness for 21.75 < K < 22.00 is 85+%. We have verified the quality of the catalog through both internal consistency checks, and comparisons to other existing and publicly available catalogs. As well as the photometric catalog, we also present catalogs of photometric redshifts and restframe photometry derived from the ten band photometry. We have collected robust spectroscopic redshift determinations from published sources for 1966 galaxies in the catalog. Based on these sources, we have achieved a (1sigma) photometric redshift accuracy of Dz/(1+z) = 0.036, with an outlier fraction of 7.8%. Most of these outliers are X-ray sources. Finally, we describe and release a utility for interpolating restframe photometry from observed SEDs, dubbed InterRest. Particularly in concert with the wealth of already publicly available data in the ECDFS, this new MUSYC catalog provides an excellent resource for studying the changing properties of the massive galaxy population at z < 2. (Abridged)Comment: Re-submitted to ApJSS after a first referee report. 27 pages, 17 figures. MUSYC data is freely available from http://astro.yale.edu/MUSYC . Links to phot-z and restframe photometry catalogs, as well as to InterRest access and documentation, including a full walkthrough, can be found at http://www.strw.leidenuniv.nl/~ent

    Mutations in FKBP10 can cause a severe form of isolated Osteogenesis imperfecta

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the <it>FKBP10 </it>gene were first described in patients with Osteogenesis imperfecta type III. Two follow up reports found <it>FKBP10 </it>mutations to be associated with Bruck syndrome type 1, a rare disorder characterized by congenital contractures and bone fragility. This raised the question if the patients in the first report indeed had isolated Osteogenesis imperfecta or if Bruck syndrome would have been the better diagnosis.</p> <p>Methods</p> <p>The patients described here are affected by severe autosomal recessive Osteogenesis imperfecta without contractures.</p> <p>Results</p> <p>Homozygosity mapping identified <it>FKBP10 </it>as a candidate gene, and sequencing revealed a base pair exchange that causes a C-terminal premature stop codon in this gene.</p> <p>Conclusions</p> <p>Our study demonstrates that <it>FKBP10 </it>mutations not only cause Bruck syndrome or Osteogenesis imperfecta type III but can result in a severe type of isolated Osteogenesis imperfecta type IV with prenatal onset. Furthermore, it adds dentinogenesis imperfecta to the spectrum of clinical symptoms associated with <it>FKBP10 </it>mutations.</p

    Novel Role of Prostate Apoptosis Response-4 Tumor Suppressor in B-Cell Chronic Lymphocytic Leukemia

    Get PDF
    Prostate apoptosis response-4 (Par-4), a proapoptotic tumor suppressor protein, is downregulated in many cancers including renal cell carcinoma, glioblastoma, endometrial, and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL-derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1-to-S cell-cycle transition. Lack of Par-4 also increased the expression of p21 and delayed CLL growth in Eμ-Tcl1 mice. Par-4 expression in CLL cells required constitutively active B-cell receptor (BCR) signaling, as inhibition of BCR signaling with US Food and Drug Administration (FDA)–approved drugs caused a decrease in Par-4 messenger RNA and protein, and an increase in apoptosis. In particular, activities of Lyn, a Src family kinase, spleen tyrosine kinase, and Bruton tyrosine kinase are required for Par-4 expression in CLL cells, suggesting a novel regulation of Par-4 through BCR signaling. Together, these results suggest that Par-4 may play a novel progrowth rather than proapoptotic role in CLL and could be targeted to enhance the therapeutic effects of BCR-signaling inhibitors

    End-to-end numerical modeling of the Roman Space Telescope coronagraph

    Full text link
    The Roman Space Telescope will have the first advanced coronagraph in space, with deformable mirrors for wavefront control, low-order wavefront sensing and maintenance, and a photon-counting detector. It is expected to be able to detect and characterize mature, giant exoplanets in reflected visible light. Over the past decade the performance of the coronagraph in its flight environment has been simulated with increasingly detailed diffraction and structural/thermal finite element modeling. With the instrument now being integrated in preparation for launch within the next few years, the present state of the end-to-end modeling is described, including the measured flight components such as deformable mirrors. The coronagraphic modes are thoroughly described, including characteristics most readily derived from modeling. The methods for diffraction propagation, wavefront control, and structural and thermal finite-element modeling are detailed. The techniques and procedures developed for the instrument will serve as a foundation for future coronagraphic missions such as the Habitable Worlds Observatory.Comment: 113 pages, 85 figures, to be published in SPIE Journal of Astronomical Telescopes, Instruments, and System
    corecore