54 research outputs found

    Intermediate Level Mechanisms Supporting Face Perception

    Get PDF
    I propose that the intermediate neural mechanisms involved in face processing may be better understood by studying concentric form-from-structure integration. This dissertation involves behavioral adaptation and masking experiments that provide evidence regarding whether face perception and concentric form-from-structure perception engage a common processing mechanism. Despite faces being complex visual stimuli, humans are able to perceive and identify faces rapidly. Studies of face perception strongly suggest that this ability involves processing the arrangement of the face features. Although high-level aspects of face perception have been studied extensively, less is known about the intermediate mechanisms involved in face processing. Converging evidence has shown that concentric form-from-structure perception involves processing the arrangement of the features and that face-sensitive mid- and high-level visual regions may be involved. I used visual adaptation and visual masking experiments to test this hypothesis. My data show that masking with, but not adaptation to, concentric form-from-structure stimuli impairs face discrimination. The results of this thesis provide evidence that concentric form-from-structure and face perception may share a common processing mechanism

    Assessing Survival and Grading the Severity of Complications in Octogenarians Undergoing Pulmonary Lobectomy.

    Get PDF
    Introduction. Octogenarians are at increased risk for complications after lung resection. With alternatives such as radiation, understanding the risks of surgery and associated survival are valuable. Data grading the severity of complications and long-term survival in this population is lacking. We reviewed our experience with lobectomy in octogenarians, grading complications using a validated thoracic morbidity and mortality schema. Methods. We retrospectively reviewed consecutive patients aged ā‰„80 undergoing lobectomy between 2004 and 2012. Demographics, clinical/pathologic stage, complications, recurrence, and mortality were collected. Complications were graded by the Seely thoracic morbidity and mortality model. Results. 45 patients (mean age 82.2 years) were analyzed. The majority of patients (28/45, 62%) were clinical stage IA/IB. 62% (28/45) of patients experienced a complication. Only 15.6% (7/45) were considered significantly morbid (ā‰„ grade IIIB) per the Seely model. Perioperative mortality was 2% and half of patients were living at a follow-up of 53 months. Overall five-year survival was 52%. Conclusions. In carefully selected octogenarians, lobectomy carries a 15.6% rate of significantly morbid complications with encouraging overall survival. These data provide the basis for a more complete discussion with patients regarding lobectomy for lung cancer

    The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals

    Get PDF
    Alzheimer's disease (AD) is associated with neurodegeneration in vulnerable limbic and heteromodal regions of the cerebral cortex, detectable in vivo using magnetic resonance imaging. It is not clear whether abnormalities of cortical anatomy in AD can be reliably measured across different subject samples, how closely they track symptoms, and whether they are detectable prior to symptoms. An exploratory map of cortical thinning in mild AD was used to define regions of interest that were applied in a hypothesis-driven fashion to other subject samples. Results demonstrate a reliably quantifiable in vivo signature of abnormal cortical anatomy in AD, which parallels known regional vulnerability to AD neuropathology. Thinning in vulnerable cortical regions relates to symptom severity even in the earliest stages of clinical symptoms. Furthermore, subtle thinning is present in asymptomatic older controls with brain amyloid binding as detected with amyloid imaging. The reliability and clinical validity of AD-related cortical thinning suggests potential utility as an imaging biomarker. This ā€œdisease signatureā€ approach to cortical morphometry, in which disease effects are mapped across the cortical mantle and then used to define ROIs for hypothesis-driven analyses, may provide a powerful methodological framework for studies of neuropsychiatric diseases

    Lateralized Connectivity between Globus Pallidus and Motor Cortex is Associated with Freezing of Gait in Parkinsonā€™s Disease

    Get PDF
    Freezing of gait (FoG) is a brief, episodic absence or marked reduction of forward progression of the feet, despite the intention to walk, that is common in people with Parkinsonā€™s disease (PD). We hypothesized that not only motor, but higher level cognitive and attention areas may be impaired in freezers. In this study, we aimed to characterize differences in cortical and subcortical functional connectivity specific to FoG. We examined resting state neuroimaging and objective measures of FoG severity and gait from 103 individuals (28 PDā€Æ+ā€ÆFoG, 36 PDā€Æāˆ’ā€ÆFoG and 39 healthy controls). Inertial sensors were used to quantify freezing severity and gait. Groups with and without FoG were matched on age, disease severity, cognitive status, and levodopa medication. MRI data was processed using surface-based registration. High-quality imaging data were used to characterize differences in connectivity specific to FoG using a pre-defined set of Regions of Interest (ROIs) and validated using whole-brain connectivity analysis. Associations between functional connectivity and objective measures of FoG were determined via predictive modeling using hold-out cross validation. We found that connectivity between the left globus pallidus (GP) and left somatosensory cortex and between two brain areas in the default and insular/vestibular networks exhibited significant differences specific to FoG and were also strong and significant predictors of FoG severity. Our findings suggest that the interplay among motor, default and vestibular areas of the left cortex are critical in the pathology of FoG

    Joint Attention and Brain Functional Connectivity in Infants and Toddlers

    Get PDF
    Initiating joint attention (IJA), the behavioral instigation of coordinated focus of 2 people on an object, emerges over the first 2 years of life and supports social-communicative functioning related to the healthy development of aspects of language, empathy, and theory of mind. Deficits in IJA provide strong early indicators for autism spectrum disorder, and therapies targeting joint attention have shown tremendous promise. However, the brain systems underlying IJA in early childhood are poorly understood, due in part to significant methodological challenges in imaging localized brain function that supports social behaviors during the first 2 years of life. Herein, we show that the functional organization of the brain is intimately related to the emergence of IJA using functional connectivity magnetic resonance imaging and dimensional behavioral assessments in a large semilongitudinal cohort of infants and toddlers. In particular, though functional connections spanning the brain are involved in IJA, the strongest brain-behavior associations cluster within connections between a small subset of functional brain networks; namely between the visual network and dorsal attention network and between the visual network and posterior cingulate aspects of the default mode network. These observations mark the earliest known description of how functional brain systems underlie a burgeoning fundamental social behavior, may help improve the design of targeted therapies for neurodevelopmental disorders, and, more generally, elucidate physiological mechanisms essential to healthy social behavior development

    Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data

    Get PDF
    Human large-scale functional brain networks are hypothesized to undergo significant changes over development. Little is known about these functional architectural changes, particularly during the second half of the first year of life. We used multivariate pattern classification of resting-state functional connectivity magnetic resonance imaging (fcMRI) data obtained in an on-going, multi-site, longitudinal study of brain and behavioral development to explore whether fcMRI data contained information sufficient to classify infant age. Analyses carefully account for the effects of fcMRI motion artifact. Support vector machines (SVMs) classified 6 versus 12 month-old infants (128 datasets) above chance based on fcMRI data alone. Results demonstrate significant changes in measures of brain functional organization that coincide with a special period of dramatic change in infant motor, cognitive, and social development. Explorations of the most different correlations used for SVM lead to two different interpretations about functional connections that support 6 versus 12-month age categorization

    The Macaque Social Responsiveness Scale (mSRS): A Rapid Screening Tool for Assessing Variability in the Social Responsiveness of Rhesus Monkeys (Macaca mulatta).

    No full text
    Understanding the biological mechanisms underlying human neuropsychiatric disorders, such as autism spectrum disorder (ASD), has been hindered by the lack of a robust, translational animal model. Rhesus monkeys (Macaca mulatta) display many of the same social behaviors that are affected in ASD, making them an excellent animal species in which to model social impairments. However, the social impairments associated with ASD may reflect extreme ends of a continuous distribution of traits. Thus, to validate the rhesus monkey as an animal model for studying social impairments that has strong translational relevance for ASD, researchers need an easily-implemented measurement tool that can quantify variation in social behavior dimensionally. The Social Responsiveness Scale (SRS) is a 65-item survey that identifies both typical and atypical social behaviors in humans that covary with ASD symptom severity. A chimpanzee SRS has already been validated and the current study adapted this tool for use in the rhesus monkey (mSRS). Fifteen raters completed the mSRS for 105 rhesus monkeys living at the Yerkes National Primate Research Center. The mSRS scores showed a unimodal distribution with a positive skew that identified 6 statistical outliers. Inter-rater reliability was very strong, but only 17 of the 36 questions showed positive intra-item reliability. The results of an exploratory factor analysis identified 3 factors that explained over 60% of the variance, with 12 items significantly loading onto the primary factor. These items reflected behaviors associated with social avoidance, social anxiety or inflexibility and social confidence. These initial findings are encouraging and suggest that variability in the social responsiveness of rhesus monkeys can be quantified using the mSRS: a tool that has strong translational relevance for human disorders. With further modification, the mSRS may provide an promising new direction for research on the biological mechanisms underlying social impairments

    NiBabies: a robust preprocessing pipeline for infant functional MRI

    No full text
    <p>NiBabies is a robust and easy-to-use pipeline for preprocessing of diverse infant and neonate fMRI data. The transparent workflow dispenses of manual intervention, thereby ensuring the reproducibility of the results.</p&gt
    • ā€¦
    corecore