383 research outputs found

    The XV-15 tilt rotor research aircraft

    Get PDF
    The design characteristics of the XV-15 Tilt rotor research aircraft are presented. Particular attention is given to the following: control system; conversion system; and propulsion system. Flight test results are also reported

    Inhomogeneity of the intrinsic magnetic field in superconducting YBa2Cu3OX compounds as revealed by rare-earth EPR-probe

    Full text link
    X-band electron paramagnetic resonance on doped Er3+ and Yb3+ ions in Y0.99(Yb,Er)0.01Ba2Cu3OX compounds with different oxygen contents in the wide temperature range (4-120)K have been made. In the superconducting species, the strong dependencies of the linewidth and resonance line position from the sweep direction of the applied magnetic field are revealed at the temperatures significantly below TC. The possible origins of the observed hysteresis are analyzed. Applicability of the presented EPR approach to extract information about the dynamics of the flux-line lattice and critical state parameters (critical current density, magnetic penetration depth, and characteristic spatial scale of the inhomogeneity) is discussedComment: 17 pages, 5 Figures. Renewed versio

    Investigation of the chemical vicinity of crystal defects in ion-irradiated Mg and AZ31 with coincident Doppler broadening spectroscopy

    Full text link
    Crystal defects in magnesium and magnesium based alloys like AZ31 are of major importance for the understanding of their macroscopic properties. We have investigated defects and their chemical surrounding in Mg and AZ31 on an atomic scale with Doppler broadening spectroscopy of the positron annihilation radiation. In these Doppler spectra the chemical information and the defect contribution have to be thoroughly separated. For this reason samples of annealed Mg were irradiated with Mg-ions in order to create exclusively defects. In addition Al- and Zn-ion irradiation on Mg-samples was performed in order to create samples with defects and impurity atoms. The ion irradiated area on the samples was investigated with laterally and depth resolved positron Doppler broadening spectroscopy (DBS) and compared with preceding SRIM-simulations of the vacancy distribution, which are in excellent agreement. The investigation of the chemical vicinity of crystal defects in AZ31 was performed with coincident Doppler broadening spectroscopy (CDBS) by comparing Mg-ion irradiated AZ31 with Mg-ion irradiated Mg. No formation of solute-vacancy complexes was found due to the ion irradiation, despite the high defect mobility.Comment: Submitted to Physical Review B on March 20 20076. Revised version submitted on September 28 2007. Accepted on October 19 200

    Contributions of point defects, chemical disorder, and thermal vibrations to electronic properties of Cd1-xZnxTe alloys

    Get PDF
    We present a first-principles study based on density functional theory of thermodynamic and electronic properties of the most important intrinsic defects in the semiconductor alloy Cd1-xZnxTe with x < 0.13. The alloy is represented by a set of supercells with disorder on the Cd/Zn sublattice. Defect formation energies as well as electronic and optical transition levels are analyzed as a function of composition. We show that defect formation energies increase with Zn content with the exception of the neutral Te vacancy. This behavior is qualitatively similar to but quantitatively rather different from the effect of volumetric strain on defect properties in pure CdTe. Finally, the relative carrier scattering strengths of point defects, alloy disorder, and phonons are obtained. It is demonstrated that for realistic defect concentrations, carrier mobilities are limited by phonon scattering for temperatures above approximately 150 K

    Exploring CEvNS with NUCLEUS at the Chooz Nuclear Power Plant

    Full text link
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of (anti-)neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study CEν\nuNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low energy threshold and a time response fast enough to be operated in above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measure CEν\nuNS of reactor antineutrinos. A new experimental site, denoted the Very-Near-Site (VNS) at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 GWth_{\mathrm{th}} reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental setup with dedicated active and passive background reduction techniques is presented. Furthermore, the feasibility to operate the NUCLEUS detectors in coincidence with an active muon-veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the promising physics potential of NUCLEUS at the Chooz nuclear power plant

    Effect of diet-induced weight loss on lipoprotein(a) levels in obese individuals with and without type 2 diabetes

    Get PDF
    _Aims/hypothesis:_ Elevated levels of lipoprotein(a) [Lp(a)] are an independent risk factor for cardiovascular disease (CVD), particularly in individuals with type 2 diabetes. Although weight loss improves conventional risk factors for CVD in type 2 diabetes, the effects on Lp(a) are unknown and may influence the long-term outcome of CVD after diet-induced weight loss. The aim of this clinical study was to determine the effect of diet-induced weight loss on Lp(a) levels in obese individuals with type 2 diabetes. _Methods:_ Plasma Lp(a) levels were determined by immunoturbidimetry in plasma obtained before and after 3–4 months of an energy-restricted diet in four independent study cohorts. The primary cohort consisted of 131 predominantly obese patients with type 2 diabetes (cohort 1), all participants of the Preven

    A genome-wide association meta-analysis on lipoprotein (a) concentrations adjusted for apolipoprotein (a) isoforms.

    Get PDF
    High lipoprotein (a) [Lp(a)] concentrations are an independent risk factor for cardiovascular outcomes. Concentrations are strongly influenced by apo(a) kringle IV repeat isoforms. We aimed to identify genetic loci associated with Lp(a) concentrations using data from five genome-wide association studies (n = 13,781). We identified 48 independent SNPs in the &lt;i&gt;LPA&lt;/i&gt; and 1 SNP in the &lt;i&gt;APOE&lt;/i&gt; gene region to be significantly associated with Lp(a) concentrations. We also adjusted for apo(a) isoforms to identify loci affecting Lp(a) levels independently from them, which resulted in 31 SNPs (30 in the &lt;i&gt;LPA&lt;/i&gt; , 1 in the &lt;i&gt;APOE&lt;/i&gt; gene region). Seven SNPs showed a genome-wide significant association with coronary artery disease (CAD) risk. A rare SNP (rs186696265; MAF ∼1%) showed the highest effect on Lp(a) and was also associated with increased risk of CAD (odds ratio = 1.73, &lt;i&gt;P&lt;/i&gt; = 3.35 × 10 &lt;sup&gt;-30&lt;/sup&gt; ). Median Lp(a) values increased from 2.1 to 91.1 mg/dl with increasing number of Lp(a)-increasing alleles. We found the &lt;i&gt;APOE2&lt;/i&gt; -determining allele of rs7412 to be significantly associated with Lp(a) concentrations ( &lt;i&gt;P&lt;/i&gt; = 3.47 × 10 &lt;sup&gt;-10&lt;/sup&gt; ). Each &lt;i&gt;APOE2&lt;/i&gt; allele decreased Lp(a) by 3.34 mg/dl corresponding to ∼15% of the population's mean values. Performing a gene-based test of association, including suspected Lp(a) receptors and regulators, resulted in one significant association of the &lt;i&gt;TLR2&lt;/i&gt; gene with Lp(a) ( &lt;i&gt;P&lt;/i&gt; = 3.4 × 10 &lt;sup&gt;-4&lt;/sup&gt; ). In summary, we identified a large number of independent SNPs in the &lt;i&gt;LPA&lt;/i&gt; gene region, as well as the &lt;i&gt;APOE2&lt;/i&gt; allele, to be significantly associated with Lp(a) concentrations

    Polymorphisms in the gene regions of the adaptor complex LAMTOR2/LAMTOR3 and their association with breast cancer risk.

    Get PDF
    Background: The late endosomal LAMTOR complex serves as a convergence point for both the RAF/MEK/ERK and the PI3K/AKT/mTOR pathways. Interestingly, both of these signalling cascades play a significant role in the aetiology of breast cancer. Our aim was to address the possible role of genetic polymorphisms in LAMTOR2 and LAMTOR3 as genetic risk factors for breast cancer. Methodology/Results: We sequenced the exons and exon-intron boundaries of LAMTOR2 (p14) and LAMTOR3 (MP1) in 50 prospectively collected pairs of cancerous tissue and blood samples from breast cancer patients and compared their genetic variability. We found one single nucleotide polymorphism (SNP) in LAMTOR2 (rs7541) and two SNPs in LAMTOR3 (rs2298735 and rs148972953) in both tumour and blood samples, but no somatic mutations in cancerous tissues. In addition, we genotyped all three SNPs in 296 samples from the Risk Prediction of Breast Cancer Metastasis Study and found evidence of a genetic association between rs148972953 and oestrogen (ER) and progesterone receptor negative status (PR) (ER: OR = 3.60 (1.15-11.28); PR: OR = 4.27 (1.43-12.72)). However, when we additionally genotyped rs148972953 in the MARIE study including 2,715 breast cancer cases and 5,216 controls, we observed neither a difference in genotype frequencies between patients and controls nor was the SNP associated with ER or PR. Finally, all three SNPs were equally frequent in breast cancer samples and female participants (n = 640) of the population-based SAPHIR Study. Conclusions: The identified polymorphisms in LAMTOR2 and LAMTOR3 do not seem to play a relevant role in breast cancer. Our work does not exclude a role of other not yet identified SNPs or that the here annotated polymorphism may in fact play a relevant role in other diseases. Our results underscore the importance of replication in association studies

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl
    corecore