Crystal defects in magnesium and magnesium based alloys like AZ31 are of
major importance for the understanding of their macroscopic properties. We have
investigated defects and their chemical surrounding in Mg and AZ31 on an atomic
scale with Doppler broadening spectroscopy of the positron annihilation
radiation. In these Doppler spectra the chemical information and the defect
contribution have to be thoroughly separated. For this reason samples of
annealed Mg were irradiated with Mg-ions in order to create exclusively
defects. In addition Al- and Zn-ion irradiation on Mg-samples was performed in
order to create samples with defects and impurity atoms. The ion irradiated
area on the samples was investigated with laterally and depth resolved positron
Doppler broadening spectroscopy (DBS) and compared with preceding
SRIM-simulations of the vacancy distribution, which are in excellent agreement.
The investigation of the chemical vicinity of crystal defects in AZ31 was
performed with coincident Doppler broadening spectroscopy (CDBS) by comparing
Mg-ion irradiated AZ31 with Mg-ion irradiated Mg. No formation of
solute-vacancy complexes was found due to the ion irradiation, despite the high
defect mobility.Comment: Submitted to Physical Review B on March 20 20076. Revised version
submitted on September 28 2007. Accepted on October 19 200