564 research outputs found

    The XV-15 tilt rotor research aircraft

    Get PDF
    The design characteristics of the XV-15 Tilt rotor research aircraft are presented. Particular attention is given to the following: control system; conversion system; and propulsion system. Flight test results are also reported

    Origin of resolution enhancement by co-doping of scintillators: Insight from electronic structure calculations

    Get PDF
    It was recently shown that the energy resolution of Ce-doped LaBr3_3 scintillator radiation detectors can be crucially improved by co-doping with Sr, Ca, or Ba. Here we outline a mechanism for this enhancement on the basis of electronic structure calculations. We show that (i) Br vacancies are the primary electron traps during the initial stage of thermalization of hot carriers, prior to hole capture by Ce dopants; (ii) isolated Br vacancies are associated with deep levels; (iii) Sr doping increases the Br vacancy concentration by several orders of magnitude; (iv) SrLa\text{Sr}_\text{La} binds to VBrV_\text{Br} resulting in a stable neutral complex; and (v) association with Sr causes the deep vacancy level to move toward the conduction band edge. The latter is essential for reducing the effective carrier density available for Auger quenching during thermalization of hot carriers. Subsequent de-trapping of electrons from SrLaVLa\text{Sr}_\text{La}-V_\text{La} complexes then can activate Ce dopants that have previously captured a hole leading to luminescence. This mechanism implies an overall reduction of Auger quenching of free carriers, which is expected to improve the linearity of the photon light yield with respect to the energy of incident electron or photon

    Dynasor - A Tool for Extracting Dynamical Structure Factors and Current Correlation Functions from Molecular Dynamics Simulations

    Get PDF
    Perturbative treatments of the lattice dynamics are widely successful for many crystalline materials; however, their applicability is limited for strongly anharmonic systems, metastable crystal structures and liquids. The full dynamics of these systems can, however, be accessed via molecular dynamics (MD) simulations using correlation functions, which includes dynamical structure factors providing a direct bridge to experiment. To simplify the analysis of correlation functions, here the dynasor package is presented as a flexible and efficient tool that enables the calculation of static and dynamical structure factors, current correlation functions as well as their partial counterparts from MD trajectories. The dynasor code can handle input from several major open source MD packages and thanks to its C/Python structure can be readily extended to support additional codes. The utility of dynasor is demonstrated via examples for both solid and liquid single and multi-component systems. In particular, the possibility to extract the full temperature dependence of phonon frequencies and lifetimes is\ua0emphasized

    Modeling of vibrational and configurational degrees of freedom in hexagonal and cubic tungsten carbide at high temperatures

    Get PDF
    Transition metal carbide is a class of materials characterized by high hardness, high melting points, and low chemical reactivity. It is widely used in industrial applications involving exposure to elevated temperatures, aggressive media, and heavy loads, and is thus of technological and industrial importance. In this paper the high-temperature thermodynamic properties of tungsten carbide, WC, is studied. At most temperatures below melting, WC assumes a hexagonal structure with essentially no vacancies (δ-WC). Only at very high temperatures (around 3000 K), WC crystallizes in the cubic rocksalt structure (γ-WC), which is more common for the transition metal carbides and in the case for WC can contain up to 40% carbon vacancies. At lower temperatures, γ-WC can, however, form as thin interfacial structures or nanoparticles. Hence, the thermodynamic properties of both γ-WC and δ-WC are of relevance. Here, we conduct a first-principles density-functional theory based computational investigation of the γ-WC and δ-WC phases, which requires modeling of high carbon vacancy concentrations at high temperatures. The configurational degrees of freedom are modeled with an alloy cluster expansion and sampled through Monte Carlo simulations. To account for the dynamic instability of the cubic γ-WC phase at low temperatures, the vibrational degrees of freedom are treated using effective harmonic models constructed from ab initio molecular dynamics simulations. Finally, we obtain a part of the W-C phase diagram in reasonably quantitative agreement with experimental data

    Y-12 Site Sustainability Plan

    Full text link
    This plan addresses: Greenhouse Gas Reduction and Comprehensive Greenhouse Gas Inventory; Buildings, ESPC Initiative Schedule, and Regional and Local Planning; Fleet Management; Water Use Efficiency and Management; Pollution Prevention and Waste Reduction; Sustainable Acquisition; Electronic Stewardship and Data Centers; Renewable Energy; Climate Change; and Budget and Funding

    Inhomogeneity of the intrinsic magnetic field in superconducting YBa2Cu3OX compounds as revealed by rare-earth EPR-probe

    Full text link
    X-band electron paramagnetic resonance on doped Er3+ and Yb3+ ions in Y0.99(Yb,Er)0.01Ba2Cu3OX compounds with different oxygen contents in the wide temperature range (4-120)K have been made. In the superconducting species, the strong dependencies of the linewidth and resonance line position from the sweep direction of the applied magnetic field are revealed at the temperatures significantly below TC. The possible origins of the observed hysteresis are analyzed. Applicability of the presented EPR approach to extract information about the dynamics of the flux-line lattice and critical state parameters (critical current density, magnetic penetration depth, and characteristic spatial scale of the inhomogeneity) is discussedComment: 17 pages, 5 Figures. Renewed versio

    Investigation of the chemical vicinity of crystal defects in ion-irradiated Mg and AZ31 with coincident Doppler broadening spectroscopy

    Full text link
    Crystal defects in magnesium and magnesium based alloys like AZ31 are of major importance for the understanding of their macroscopic properties. We have investigated defects and their chemical surrounding in Mg and AZ31 on an atomic scale with Doppler broadening spectroscopy of the positron annihilation radiation. In these Doppler spectra the chemical information and the defect contribution have to be thoroughly separated. For this reason samples of annealed Mg were irradiated with Mg-ions in order to create exclusively defects. In addition Al- and Zn-ion irradiation on Mg-samples was performed in order to create samples with defects and impurity atoms. The ion irradiated area on the samples was investigated with laterally and depth resolved positron Doppler broadening spectroscopy (DBS) and compared with preceding SRIM-simulations of the vacancy distribution, which are in excellent agreement. The investigation of the chemical vicinity of crystal defects in AZ31 was performed with coincident Doppler broadening spectroscopy (CDBS) by comparing Mg-ion irradiated AZ31 with Mg-ion irradiated Mg. No formation of solute-vacancy complexes was found due to the ion irradiation, despite the high defect mobility.Comment: Submitted to Physical Review B on March 20 20076. Revised version submitted on September 28 2007. Accepted on October 19 200

    Contributions of point defects, chemical disorder, and thermal vibrations to electronic properties of Cd1-xZnxTe alloys

    Get PDF
    We present a first-principles study based on density functional theory of thermodynamic and electronic properties of the most important intrinsic defects in the semiconductor alloy Cd1-xZnxTe with x < 0.13. The alloy is represented by a set of supercells with disorder on the Cd/Zn sublattice. Defect formation energies as well as electronic and optical transition levels are analyzed as a function of composition. We show that defect formation energies increase with Zn content with the exception of the neutral Te vacancy. This behavior is qualitatively similar to but quantitatively rather different from the effect of volumetric strain on defect properties in pure CdTe. Finally, the relative carrier scattering strengths of point defects, alloy disorder, and phonons are obtained. It is demonstrated that for realistic defect concentrations, carrier mobilities are limited by phonon scattering for temperatures above approximately 150 K
    corecore