It was recently shown that the energy resolution of Ce-doped LaBr3
scintillator radiation detectors can be crucially improved by co-doping with
Sr, Ca, or Ba. Here we outline a mechanism for this enhancement on the basis of
electronic structure calculations. We show that (i) Br vacancies are the
primary electron traps during the initial stage of thermalization of hot
carriers, prior to hole capture by Ce dopants; (ii) isolated Br vacancies are
associated with deep levels; (iii) Sr doping increases the Br vacancy
concentration by several orders of magnitude; (iv) SrLa binds
to VBr resulting in a stable neutral complex; and (v) association
with Sr causes the deep vacancy level to move toward the conduction band edge.
The latter is essential for reducing the effective carrier density available
for Auger quenching during thermalization of hot carriers. Subsequent
de-trapping of electrons from SrLa−VLa complexes then
can activate Ce dopants that have previously captured a hole leading to
luminescence. This mechanism implies an overall reduction of Auger quenching of
free carriers, which is expected to improve the linearity of the photon light
yield with respect to the energy of incident electron or photon