54 research outputs found

    Influence of ceramic surface conditioning and resin cements on microtensile bond strength to a glass ceramic

    No full text
    Statement of problem. It is not clear how different glass ceramic surface pretreatments influence the bonding capacity of various luting agents to these surfaces.Purpose. The purpose of this study was to evaluate the microtensile bond strength (mu TBS) of 3 resin cements to a lithia disilicate-based ceramic submitted to 2 surface conditioning treatments.Material and methods. Eighteen 5 X 6 X 8-mm ceramic (IPS Empress 2) blocks were fabricated according to manufacturer's instructions and duplicated in composite resin (Tetric Ceram). Ceramic blocks were polished and divided into 2 groups (n=9/treatment): no conditioning (no-conditioning/control), or 5% hydrofluoric acid etching for 20 seconds and silanization for 1 minute (HF + SIL). Ceramic blocks were cemented to the composite resin blocks with I self-adhesive universal resin cement (RelyX Unicem) or 1 of 2 resin-based luting agents (Multilink or Panavia F), according to the manufacturer's instructions. The composite resin-ceramic blocks were stored in humidity at 37 degrees C for 7 days and serially sectioned to produce 25 beam specimens per group with a 1.0-mm(2) cross-sectional area. Specimens were thermal cycled (5000 cycles, 5 degrees C-55 degrees C) and tested in tension at 1 mm/min. Microtensile bond strength data (MPa) were analyzed by 2-way analysis of variance and Tukey multiple comparisons tests (alpha=.05). Fractured specimens were examined with a stereomicroscope (X40) and classified as adhesive, mixed, or cohesive.Results. The surface conditioning factor was significant (HF+SIL > no-conditioning) (P<.0001). Considering the unconditioned groups, the mu TBS of RelyX Unicem was significantly higher (9.6 +/- 1.9) than that of Multilink (6.2 +/- 1.2) and Panavia F (7.4 +/- 1.9). Previous etching and silanization yielded statistically higher mu TBS values for RelyX Unicem (18.8 +/- 3.5) and Multilink (17.4 +/- 3.0) when compared to Panavia F (15.7 +/- 3.8). Spontaneous debonding after thermal cycling was detected when luting agents were applied to untreated ceramic surfaces.Conclusion. Etching and silanization treatments appear to be crucial for resin bonding to a lithia disilicate-based ceramic, regardless of the resin cement used

    Σ(1385)± resonance production in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    Hadronic resonances are used to probe the hadron gas produced in the late stage of heavy-ion collisions since they decay on the same timescale, of the order of 1 to 10 fm/c, as the decoupling time of the system. In the hadron gas, (pseudo)elastic scatterings among the products of resonances that decayed before the kinetic freeze-out and regeneration processes counteract each other, the net effect depending on the resonance lifetime, the duration of the hadronic phase, and the hadronic cross sections at play. In this context, the Σ(1385)± particle is of particular interest as models predict that regeneration dominates over rescattering despite its relatively short lifetime of about 5.5 fm/c. The first measurement of the Σ(1385)± resonance production at midrapidity in Pb-Pb collisions at sNN−−−√=5.02 TeV with the ALICE detector is presented in this Letter. The resonances are reconstructed via their hadronic decay channel, Λπ, as a function of the transverse momentum (pT) and the collision centrality. The results are discussed in comparison with the measured yield of pions and with expectations from the statistical hadronization model as well as commonly employed event generators, including PYTHIA8/Angantyr and EPOS3 coupled to the UrQMD hadronic cascade afterburner. None of the models can describe the data. For Σ(1385)±, a similar behaviour as K∗(892)0 is observed in data unlike the predictions of EPOS3 with afterburner

    Measurement of the lifetime and Λ separation energy of 3ΛH

    No full text
    The most precise measurements to date of the 3ΛH lifetime τ and Λ separation energy BΛ are obtained using the data sample of Pb-Pb collisions at √= 5.02 TeV collected by ALICE at the LHC. The 3ΛH is reconsNN structed via its charged two-body mesonic decay channel (3ΛH→ 3He + π− and the charge-conjugate process). The measured values τ=[253±11 (stat.)±6 (syst.)] ps and BΛ=[102±63 (stat.)±67 (syst.)] keV are compatible with predictions from effective field theories and confirm that the 3ΛH structure is consistent with a weakly-bound system

    Investigation of K+K− interactions via femtoscopy in Pb-Pb collisions at √sNN = 2.76 TeV at the CERN Large Hadron Collider

    No full text
    Femtoscopic correlations of non-identical charged kaons (K+K−) are studied in Pb−Pb collisions at a center-of-mass energy per nucleon−nucleon collision sNN−−−√=2.76 TeV by ALICE at the LHC. One-dimensional K+K− correlation functions are analyzed in three centrality classes and eight intervals of particle-pair transverse momentum. The Lednický and Luboshitz interaction model used in the K+K− analysis includes the final-state Coulomb interactions between kaons and the final-state interaction through a0(980) and f0(980) resonances. The mass of f0(980) and coupling were extracted from the fit to K+K− correlation functions using the femtoscopic technique for the first time. The measured mass and width of the f0(980) resonance are consistent with other published measurements. The height of the ϕ(1020) meson peak present in the K+K− correlation function rapidly decreases with increasing source radius, qualitatively in agreement with an inverse volume dependence. A phenomenological fit to this trend suggests that the ϕ(1020) meson yield is dominated by particles produced directly from the hadronization of the system. The small fraction subsequently produced by FSI could not be precisely quantified with data presented in this paper and will be assessed in future work

    Two-particle transverse momentum correlations in pp and p-Pb collisions at energies available at the CERN Large Hadron Collider

    No full text
    Two-particle transverse momentum differential correlators, recently measured in Pb-Pb collisions at LHC energies, provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at s√=7 TeV and sNN−−−√=5.02 TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p-Pb to Pb-Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed

    Measurement of inclusive J/ψ pair production cross section in pp collisions at √s = 13 Te

    No full text
    The production cross section of inclusive J/ψ pairs in pp collisions at a centre-of-mass energy s√=13 TeV is measured with ALICE. The measurement is performed for J/ψ in the rapidity interval 2.50. The production cross section of inclusive J/ψ pairs is reported to be 10.3±2.3(stat.)±1.3(syst.) nb in this kinematic interval. The contribution from non-prompt J/ψ (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The effective double-parton scattering cross section is computed, neglecting the single-parton scattering contribution

    Energy dependence of coherent photonuclear production of J/ψ mesons in ultra-peripheral Pb-Pb collisions at sNN \sqrt{{\textrm{s}}_{\textrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe cross section for coherent photonuclear production of J/ψ is presented as a function of the electromagnetic dissociation (EMD) of Pb. The measurement is performed with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair of sNN \sqrt{{\textrm{s}}_{\textrm{NN}}} = 5.02 TeV. Cross sections are presented in five different J/ψ rapidity ranges within |y| < 4, with the J/ψ reconstructed via its dilepton decay channels. In some events the J/ψ is not accompanied by EMD, while other events do produce neutrons from EMD at beam rapidities either in one or the other beam direction, or in both. The cross sections in a given rapidity range and for different configurations of neutrons from EMD allow for the extraction of the energy dependence of this process in the range 17 < WγPb,n_{γ Pb,n} < 920 GeV, where WγPb,n_{γ Pb,n} is the centre-of-mass energy per nucleon of the γPb system. This range corresponds to a Bjorken-x interval spanning about three orders of magnitude: 1.1 × 105^{−5} < x < 3.3 × 102^{−2}. In addition to the ultra-peripheral and photonuclear cross sections, the nuclear suppression factor is obtained. These measurements point to a strong depletion of the gluon distribution in Pb nuclei over a broad, previously unexplored, energy range. These results, together with previous ALICE measurements, provide unprecedented information to probe quantum chromodynamics at high energies.[graphic not available: see fulltext

    Higher-order correlations between different moments of two flow amplitudes in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The correlations between different moments of two flow amplitudes, extracted with the recently developed asymmetric cumulants, are measured in Pb−Pb collisions at sNN−−−√=5.02 TeV recorded by the ALICE detector at the CERN Large Hadron Collider. The magnitudes of the measured observables show a dependence on the different moments as well as on the collision centrality, indicating the presence of non-linear response in all even moments up to the eighth. Furthermore, the higher-order asymmetric cumulants show different signatures than the symmetric and lower-order asymmetric cumulants. Comparisons with state-of-the-art event generators using two different parametrizations obtained from Bayesian optimization show differences between data and simulations in many of the studied observables, indicating a need for further tuning of the models behind those event generators. These results provide new and independent constraints on the initial conditions and transport properties of the system created in heavy-ion collisions
    corecore