35 research outputs found

    Reasoning by Structural Analogy Taking into Account the Context for Intelligent Decision Support Systems

    Get PDF
    Development of methods and tools for modeling human reasoning (common sense reasoning) by analogy in intelligent decision support systems is considered. Special attention is drawn to modeling reasoning by structural analogy taking the context into account. The possibility of estimating the obtained analogies taking into account the context is studied. This work was supported by RFBR

    Case-based Reasoning Method for Real-time Expert Diagnostics Systems

    Get PDF
    The method of case-based reasoning for a solution of problems of real-time diagnostics and forecasting in intelligent decision support systems (IDSS) is considered. Special attention is drawn to case library structure for real-time IDSS (RT IDSS) and algorithm of k-nearest neighbors type. This work was supported by RFBR

    Analogous Reasoning and Case-based Reasoning for Intelligent Decision Support Systems

    Get PDF
    Methods of analogous reasoning and case-based reasoning for intelligent decision support systems are considered. Special attention is drawn to methods based on a structural analogy that take the context into account. This work was supported by RFBR (projects 02-07-90042, 05-07-90232)

    Trends in the development of composite reinforced concrete structures of pedestrian aboveground overpasses

    Get PDF
    Pedestrian bridges are an important part of the urban infrastructure that ensures the safety and comfort of pedestrians. They have a number of distinctive features compared to road bridges. Also, the pedestrian load itself has a significant dynamic component, which can lead to the occurrence of resonant phenomena. Composite reinforced concrete bridges are widely used among the road bridges. This is due to the possibility of including the roadway structure in the act, which increases the load-bearing capacity and reliability of the structure. The same advantages are typical for pedestrian aboveground overpasses. However, pedestrian bridges have a number of features that affect the operation of the composite reinforced concrete structure. It is well-known that the difference between bending structures in civil construction and bending structures in bridge and road construction is the ratio of the rigidness of the concrete and steel parts. The load on pedestrian aboveground overpasses is similar to the temporary load in civil buildings, adjusted for a large dynamic component. But at the same time, the spans of pedestrian aboveground overpasses are similar to the spans of road bridges. In this article, the prospects for the development of composite reinforced concrete structures of pedestrian overpasses are reviewed

    Spectroscopy of solid-solution transparent sesquioxide laser ceramic Tm:LuYO3

    Get PDF
    We report on a detailed spectroscopic study of a Tm3+-doped transparent sesquioxide ceramic based on a solid-solution (lutetia – yttria, LuYO3) composition. The ceramic was fabricated using commercial oxide powders by hot isostatic pressing at 1600°C for 3 h at 190 MPa argon pressure. The most intense Raman peak in Tm:LuYO3 at 385.4 cm−1 takes an intermediate position between those for the parent compounds and is notably broadened (linewidth: 12.8 cm−1). The transition intensities of Tm3+ ions were calculated using the Judd-Ofelt theory; the intensity parameters are W2 = 2.537, W4 = 1.156 and W6 = 0.939 [1020 cm2]. For the 3F4 → 3H6 transition, the stimulated-emission cross-section amounts to 0.27 × 10−20 cm2 at 2059nm and the reabsorption-free luminescence lifetime is 3.47 ms (the 3F4 radiative lifetime is 3.85 ± 0.1 ms). The Tm3+ ions in the ceramic exhibit long-wave multiphonon-assisted emission extending up to at least 2.35 µm; a phonon sideband at 2.23 µm is observed and explained by coupling between electronic transitions and the dominant Raman mode of the sesquioxides. Low temperature (12 K) spectroscopy reveals a significant inhomogeneous spectral broadening confirming formation of a substitutional solid-solution. The mixed ceramic is promising for ultrashort pulse generation at >2 µm

    Trends in the development of composite reinforced concrete structures of pedestrian aboveground overpasses

    No full text
    Pedestrian bridges are an important part of the urban infrastructure that ensures the safety and comfort of pedestrians. They have a number of distinctive features compared to road bridges. Also, the pedestrian load itself has a significant dynamic component, which can lead to the occurrence of resonant phenomena. Composite reinforced concrete bridges are widely used among the road bridges. This is due to the possibility of including the roadway structure in the act, which increases the load-bearing capacity and reliability of the structure. The same advantages are typical for pedestrian aboveground overpasses. However, pedestrian bridges have a number of features that affect the operation of the composite reinforced concrete structure. It is well-known that the difference between bending structures in civil construction and bending structures in bridge and road construction is the ratio of the rigidness of the concrete and steel parts. The load on pedestrian aboveground overpasses is similar to the temporary load in civil buildings, adjusted for a large dynamic component. But at the same time, the spans of pedestrian aboveground overpasses are similar to the spans of road bridges. In this article, the prospects for the development of composite reinforced concrete structures of pedestrian overpasses are reviewed
    corecore