64 research outputs found

    Aplicación del principio de proporcionalidad y razonabilidad en la determinación de la pena en el delito de violencia y resistencia a la autoridad policial, en los juzgados penales unipersonales de la provincia de Huaraz, periodo 2017 - 2018

    Get PDF
    El presente trabajo de investigación tiene como propósito determinar y analizar el tratamiento a nivel fiscal y judicial de la aplicación del principio de proporcionalidad y razonabilidad en la determinación de la pena en el delito de violencia y resistencia a la autoridad policial, en los juzgados penales unipersonales de la provincia de Huaraz, periodo 2017- 2018, empleando guías de observación y formato de encuesta. El modelo procesal penal acusatorio, instaurado en nuestro país, posee la virtud de efectuar una clara división de funciones y deberes entre las autoridades estatales que desarrollan las tareas de persecución y decisión de fondo, con relación a la justicia penal; encargando así al Ministerio Público la primera tarea mencionada, y la segunda, al Poder Judicial, con lo que queda separado del jus puniendi. El caso debe constituir una figura y un producto que deberá siempre adquirir el fiscal al finalizar la investigación preparatoria para, con legitima intención, poder acusar al procesado y, por lo tanto, comprometerse también a demostrar en la etapa intermedia encontrarse en posesión de elementos de convicción suficientes como para acudir al juicio oral y conseguir una condena. El presente estudio por su naturaleza metodológica responde a un estudio dogmático jurídico.Tesi

    Structural design of the optical bench and enclosure for MAORY, adaptive optics module for the ELT

    Get PDF
    This paper outlines an overview of the mechanical design of the optical bench and the enclosure for MAORY (Multi-conjugate Adaptive Optics RelaY) for the Extremely Large Telescope. MAORY will enable high-angular resolution observations in the near infrared by employing real-time compensation of the wave-front distortions due to atmospheric turbulence and other disturbances on the telescope. The main purpose of the optical bench is to provide support to the opto-mechanical mountings and subsystems that will be integrated on it. The design philosophy behind the proposed architecture is a truss spatial structure with the aim of optimizing the mass of the Main Structure. The enclosure has to protect the optomechanical elements and to achieve a uniform temperature distribution in its internal environment. The mechanical design of the bench and the enclosure was supported by a set of structural FE analyses, to verify the design compliance with ESO (European Southern Observatory) requirements

    Graphene via Molecule-Assisted Ultrasound-Induced Liquid-Phase Exfoliation: A Supramolecular Approach

    Get PDF
    Graphene is a two-dimensional (2D) material holding unique optical, mechanical, thermal and electrical properties. The combination of these exceptional characteristics makes graphene an ideal model system for fundamental physical and chemical studies as well as technologically ground breaking material for a large range of applications. Graphene can be produced either following a bottom-up or top-down method. The former is based on the formation of covalent networks suitably engineered molecular building blocks undergoing chemical reaction. The latter takes place through the exfoliation of bulk graphite into individual graphene sheets. Among them, ultrasound-induced liquid-phase exfoliation (UILPE) is an appealing method, being very versatile and applicable to different environments and on various substrate types. In this chapter, we describe the recently reported methods to produce graphene via molecule-assisted UILPE of graphite, aiming at the generation of high-quality graphene. In particular, we will focus on the supramolecular approach, which consists in the use of suitably designed organic molecules during the UILPE of graphite. These molecules act as graphene dispersion-stabilizing agents during the exfoliation. This method relying on the joint effect of a solvent and ad hoc molecules to foster the exfoliation of graphite into graphene in liquid environment represents a promising and modular method toward the improvement of the process of UILPE in terms of the concentration and quality of the exfoliated material. Furthermore, exfoliations in aqueous and organic solutions are presented and discussed separately

    Calígula

    Get PDF
    14 p.Calígula fue un emperador de la historia de Roma que será recordado para la prosperidad como un emperador totalmente loco y desquiciado.Introducción e información general Calígula Texto prudencia Analogía Caso y pregunta Prudente o imprudente Bibliografía

    Functionalized metallic 2D transition metal dichalcogenide-based solid-state electrolyte for flexible all-solid-state supercapacitors

    Get PDF
    Highly efficient and durable flexible solid-state supercapacitors (FSSSCs) are emerging as low-cost devices for portable and wearable electronics due to the elimination of leakage of toxic/corrosive liquid electrolytes and their capability to withstand elevated mechanical stresses. Nevertheless, the spread of FSSSCs requires the development of durable and highly conductive solid-state electrolytes, whose electrochemical characteristics must be competitive with those of traditional liquid electrolytes. Here, we propose an innovative composite solid-state electrolyte prepared by incorporating metallic two-dimensional group-5 transition metal dichalcogenides, namely, liquid-phase exfoliated functionalized niobium disulfide (f-NbS2) nanoflakes, into a sulfonated poly(ether ether ketone) (SPEEK) polymeric matrix. The terminal sulfonate groups in f-NbS2 nanoflakes interact with the sulfonic acid groups of SPEEK by forming a robust hydrogen bonding network. Consequently, the composite solid-state electrolyte is mechanically/dimensionally stable even at a degree of sulfonation of SPEEK as high as 70.2%. At this degree of sulfonation, the mechanical strength is 38.3 MPa, and thanks to an efficient proton transport through the Grotthuss mechanism, the proton conductivity is as high as 94.4 mS cm–1 at room temperature. To elucidate the importance of the interaction between the electrode materials (including active materials and binders) and the solid-state electrolyte, solid-state supercapacitors were produced using SPEEK and poly(vinylidene fluoride) as proton conducting and nonconducting binders, respectively. The use of our solid-state electrolyte in combination with proton-conducting SPEEK binder and carbonaceous electrode materials (mixture of activated carbon, single/few-layer graphene, and carbon black) results in a solid-state supercapacitor with a specific capacitance of 116 F g–1 at 0.02 A g–1, optimal rate capability (76 F g–1 at 10 A g–1), and electrochemical stability during galvanostatic charge/discharge cycling and folding/bending stresses

    Thermal insulation with 2D materials: liquid phase exfoliated vermiculite functional nanosheets

    Get PDF
    Phyllosilicates are layered materials possessing unique thermal properties, commonly exploited in their multilayered crystalline form as refractory insulators and heating elements. A more versatile use of such materials, however, would require their existence in the form of inks and dispersions ready to be patterned. Within this framework, the liquid-phase exfoliation of low-cost, low-purity materials such as bulk multiphasic minerals and powders represents an economically advantageous approach for the production of 2D nano-sized objects with a defined composition, size and morphology. Here, ultrasound-assisted exfoliation and shear-mixing of a multi-phasic vermiculite in mild acidic aqueous solutions were employed to successfully obtain dispersions of mono- and few-layer thick clay nanosheets. The exfoliated materials were thoroughly investigated through granulometry, X-Ray Diffraction (XRD), specific surface area measurements and AFM imaging. Despite the fact that the lateral size and the thickness distribution of exfoliated flakes obtained with the two approaches appear similar, the ultrasound-assisted exfoliation process yielded a larger amount of mono- and bi-layer thick flakes as well as materials with a higher specific surface area. XRD analysis revealed that the use of ultrasound waves in an acidic environment results in the complete exfoliation of the vermiculite layer, whereas the use of shear forces under the same conditions results in the exfoliation of hydrobiotite and mica crystalline phases. Thermal conductivity measurements provided clear evidence on how the structural changes – arising from the exfoliation process – have a direct impact on the properties of the exfoliated clay. Remarkably, compared to the raw material, the thermal conductivity of the exfoliated material decreases by 25%, reaching the ultra-low thermal conductivity regime (<0.1 W m−1 K−1). Our approach may enable in the future the generation of patterns of thermal insulators onto different surfaces by applying vermiculite nanosheets in the form of dispersions and printable inks

    Oxidant-dependent antioxidant activity of polydopamine films: The chemistry-morphology interplay

    Get PDF
    Polydopamine (PDA) films allow to functionalize almost all materials with a conformal and chemically active coating. These coatings can react with reducible metallic cations and with all kinds of molecules carrying nucleophilic groups. Recently, our team extended PDA chemistry to a vast repertoire of oxidants and to acidic conditions. However, the influence of changes in the method of PDA deposition on the properties of the obtained coatings, in particular the antioxidant properties, have not been sufficiently explored. It is anticipated that the antioxidant properties should depend on the film preparation method. A combination of experimental techniques, atomic force microscopy, cyclic voltammetry and X ray photoelectron spectroscopy are used to relate the antioxidant properties of PDA films to their structural features and to their chemical composition. It is demonstrated that the antioxidant properties of PDA films are not only dependent on the type of the employed oxidant – which can be expected to affect a variable density of oxidizable groups on the surface of PDA - but also on the oxidant film morphology and roughness

    Morphology and Electronic Properties of Electrochemically Exfoliated Graphene

    Get PDF
    Electrochemically exfoliated graphene (EEG) possesses optical and electronic properties that are markedly different from those of the more explored graphene oxide in both its pristine and reduced forms. EEG also holds a unique advantage compared to other graphenes produced by exfoliation in liquid media: it can be obtained in large quantities in a short time. However, an in-depth understanding of the structure–properties relationship of this material is still lacking. In this work, we report physicochemical characterization of EEG combined with an investigation of the electronic properties of this material carried out both at the single flake level and on the films. Additionally, we use for the first time microwave irradiation to reduce the EEG and demonstrate that the oxygen functionalities are not the bottleneck for charge transport in EEG, which is rather hindered by the presence of structural defects within the basal plane

    Graphene exfoliation in the presence of semiconducting polymers for improved film homogeneity and electrical performances

    Get PDF
    We report on the production of hybrid graphene/semiconducting polymer films in one step procedure by making use of ultrasound-assisted liquid-phase exfoliation of graphite powder in the presence of π-conjugated polymers, i.e. poly(3-hexylthiophene) (P3HT) or poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo-[3,4-c]pyridine] (PCDTPT). The polymers were chosen in view of their different propensity to form crystalline structures, their decoration with alkyl chains that are known to possess high affinity for the basal plane of graphene, the energy levels of their frontier orbitals which are extremely similar to the work function of graphene, and their high electrical performance when integrated in field-effect transistors (FETs). The polymers act as a dispersion-stabilizing agent and prevent the re-aggregation of the exfoliated graphene flakes, ultimately enabling the production of homogeneous bi-component dispersions. The electrical characterization of few-layer graphene/PCDTPT hybrids, when integrated as active layer in bottom-contact bottom-gate FETs, revealed an increase of the field-effect mobility compared to the π-conjugated-based pristine devices, a result which can be attributed to the joint effect of the few-layer graphene sheets and semiconducting polymers improving the charge-transport in the channel of the field-effect transistor. In particular, few-layer graphene/PCDTPT films displayed a 30-fold increase of PCDTPT's mobility if compared to pristine polymer samples. Such findings represent a step forward towards the optimization of graphene exfoliation and processing into electronic devices, as well as towards improved electrical performance in organic-based field-effect transistors

    MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions

    Get PDF
    Two-dimensional (2D) transition metal dichalcogenides (TMDs) are continuously attracting attention for both fundamental studies and technological applications. The physical and chemical properties of ultrathin TMD sheets are extraordinarily different from those of the corresponding bulk materials and for this reason their production is a stimulating topic, especially when the preparation method enables to obtain a remarkable yield of nanosheets with large area and high quality. Herein, we present a fast (<1 h) electrochemical exfoliation of molybdenum disulfide (MoS2) via lithium-ion intercalation, by using a solution of lithium chloride in dimethyl sulfoxide (DMSO). Unlike the conventional intercalation methods based on dangerous organolithium compounds, our approach leads to the possibility to obtain mono-, bi- and tri-layer thick MoS2 nanosheets with a large fraction of the semiconducting 2H phase (∼60%), as estimated by X-ray photoelectron spectroscopy (XPS). The electrical properties of the exfoliated material were investigated through the fabrication and characterization of back-gated field-effect transistors (FETs) based on individual MoS2 nanosheets. As-fabricated devices displayed unipolar semiconducting behavior (n-type) with field-effect mobility µFE ≤ 10−3 cm2 V−1 s−1 and switching ratio Ion/Ioff ≤ 10, likely limited by 1T/2H polymorphism and defects (e.g. sulfur vacancies) induced during the intercalation/exfoliation process. A significant enhancement of the electrical performances could be achieved through a combination of vacuum annealing (150 °C) and sulfur-vacancy healing with vapors of short-chain alkanethiols, resulting in µFE up to 2 × 10−2 cm2 V−1 s−1 and Ion/Ioff ≈ 100. Our results pave the way towards the fast preparation – under ambient conditions – of semiconducting MoS2 nanosheets, suitable for application in low cost (opto-)electronic devices
    corecore