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Abstract 

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are continuously attracting attention 

for both fundamental studies and technological applications. The physical and chemical properties of 

ultrathin TMD sheets are extraordinarily different from those of the corresponding bulk materials and 

for this reason their production is a stimulating topic, especially when the preparation method enables 

to obtain a remarkable yield of nanosheets with large area and high quality. Herein, we present a fast 

(<1 hour) electrochemical exfoliation of molybdenum disulfide (MoS2) via lithium-ion intercalation, 

by using a solution of lithium chloride in dimethyl sulfoxide (DMSO). Unlike the conventional 

intercalation methods based on dangerous organolithium compounds, our approach leads to the 

possibility to obtain mono-, bi- and tri-layer thick MoS2 nanosheets with a large fraction of the 

semiconducting 2H phase (~60%), as estimated by X-ray photoelectron spectroscopy (XPS). The 

electrical properties of the exfoliated material were investigated through the fabrication and 

characterization of back-gated field-effect transistors (FETs) based on individual MoS2 nanosheets. 

As-fabricated devices displayed unipolar semiconducting behavior (n-type) with field-effect mobility 

µFE ≤ 10-3 cm2 V-1 s-1 and switching ratio Ion/Ioff ≤ 10, likely limited by 1T/2H polymorphism and 

defects (e.g. sulfur vacancies) induced during the intercalation/exfoliation process. A significant 

enhancement of the electrical performances could be achieved through a combination of vacuum 

annealing (150 °C) and sulfur-vacancy healing with vapors of short-chain alkanethiols, resulting in µFE 

up to 2×10-2 cm2 V-1 s-1 and Ion/Ioff ≈ 100. Our results pave the way towards the fast preparation ─ 

under ambient conditions ─ of semiconducting MoS2 nanosheets, suitable for application in low cost 

(opto-)electronic devices. 
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1. Introduction 

During the last years, transition metal dichalcogenides (TMDs) became the subject of a major research 

endeavor due to their unique physical and chemical properties [1-5]. The family of TMDs comprises 

materials with electronic properties spanning from insulating to semiconducting and metallic. Such a 

breadth of properties was fundamental to the development of various technologically relevant studies 

and processes to exploit in different potential applications, such as energy conversion and storage [6-

8], electronics [9-11] and sensing [12, 13]. TMDs exhibit strong in-plane covalent bonds and weak van 

der Waals interactions between adjacent layers. As in the case of graphite, van der Waals forces 

between the layers of TMDs are weak enough to allow their exfoliation by exploiting external stimuli. 

Moreover, single-layer nanosheets of TMDs possess different properties from those of their bulk 

counterparts. By considering these various advantages, many approaches are being explored to 

exfoliate TMDs into single- or few-layer thick sheets. Their exfoliation into isolated layers has been 

achieved using different processes such as mechanical exfoliation [14], sonication and dispersion in 

liquid media [15-19] and electrolysis [20-22]. In particular, the electrochemical exfoliation is more 

advantageous compared to other top-down methods since it allows the formation of nanoflakes in a 

short time (ranging from a few minutes to a few hours) and takes place under ambient conditions (by 

exploiting different electrolytes), providing thin layered nanosheets with large area and high quality 

[23].  

Among the TMDs, molybdenum disulfide (MoS2) is the most investigated material due to its 

abundance in nature and its widespread use as a lubricant [24, 25]. The electrochemical exfoliation of 

a bulk MoS2 crystal typically leads to the formation of isolated nanoflakes with two distinct crystal 

structures, i.e. the semiconducting (2H) and metallic (1T) phases [26]. More specifically, chemical 

exfoliation via lithium-ion intercalation leads to the formation of electron-rich nanosheets, 

characterized by a large fraction ─ between 60 and 70% ─ of 1T (or distorted 1T′) polytype [27]. 

Single-phase semiconducting nanoflakes have been obtained by means of post-exfoliation processes, 

such as thermal annealing [28], laser irradiation [18] and exposure to microwaves [29]. Exploiting the 

electrochemical intercalation process, Ejigu and co-workers [30] recently reported the exfoliation of a 
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MoS2 pellet by using lithium perchlorate (LiClO4) dissolved in a mixture of ethylene carbonate (EC) 

and dimethyl carbonate (DMC): the experiments were carried out under inert atmosphere (N2), lasted 

for ca. 2 hours and resulted in a percentage of semiconducting 2H phase around 40%. 

Here, we report on a simple and low-cost electrochemical intercalation process of MoS2 crystals via 

DMSO-solvated lithium-ion, where lithium chloride (LiCl) is used as source of lithium ions. The use 

of DMSO leads to the formation of Li+-DMSO adducts that can penetrate in between MoS2 layers and 

increasing the interfacial spacing. Its effect is proven by the large expansion of MoS2 crystal after the 

intercalation process. The latter is performed under ambient conditions, without any additives, and 

leads to the formation of mono- and few-layer thick nanosheets with ~60% of 2H phase. Our approach 

avoids the use of dangerous and explosive n-butyllithium [31-33] or expensive lithium foils [21]. The 

entire process can be easily performed under ambient conditions in less than 1 hour. We also explore 

the electronic properties of the exfoliated nanosheets through the fabrication and characterization of 

back-gated field-effect transistors (FETs) built on individual MoS2 nanoflakes (2-4 layers thick) by 

means of electron-beam nanolithography. As-fabricated FETs display a unipolar n-type behavior 

similar to that of semiconducting MoS2 nanosheets obtained by micromechanical cleavage (i.e. scotch-

tape method). We further show that the electrical characteristics of the FETs can be significantly 

improved through a combination of thermal annealing (150 °C) under vacuum conditions (5×10-8 

mbar) and vapor exposure to short-chain alkanethiols; a technique that we recently developed for 

healing sulfur vacancies generated by low-energy ion irradiation [34]. Such approach allows the 

increasing of µFE up to 2×10-2 cm2 V-1 s-1 and enables Ion/Ioff ratio ≈ 100. In particular, upon exposure of 

the devices to vapors of short thiolated molecules (i.e. butanethiol), µFE increases by over a factor 3, 

suggesting that sulfur vacancies are an abundant type of defects in nanosheets exfoliated via DMSO-

solvated lithium-ion intercalation. Furthermore, the large discrepancy between the aforementioned µFE 

and Ion/Ioff values and those of state-of-the-art devices − based on high-quality MoS2 nanosheets 

obtained by mechanical exfoliation via scotch tape peeling − highlights the presence of a more 

complex/detrimental disorder, which requires to be minimized towards practical (opto-)electronic 

applications. At this stage, our novel approach enables an easy and fast preparation of a large fraction 
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of 2H MoS2 nanosheets under ambient conditions. Moreover, it casts the basis for more 

comprehensive studies of the effects of exfoliation-induced disorder on the charge-transport properties 

of ultrathin MoS2 FETs. 

 

2. Methods 

2.1 Materials 

MoS2 crystals were obtained from SPI Supplies. Lithium chloride, dimethyl sulfoxide (DMSO) 

(≥99%) and 1-butanethiol were purchased from Sigma-Aldrich and were used as received.  

2.2 MoS2 electrochemical exfoliation  

A piece of MoS2 crystal (7 × 4 mm, 1 mm thick) and a Pt wire were used as working and counter 

electrodes, respectively. Some reported works on the lithium-ion electrochemical methods showed an 

optimal potential in DMSO, EC/DMC or other around 4─5 V [30, 35]. By using a two electrodes cell 

and applying a cathode-potential of 5 V, the expansion and intercalation process of MoS2 bulk crystal 

is achieved during a time of 45 minutes using, as electrolyte and source of lithium ions, a 1 M solution 

of LiCl in DMSO (see Fig. S2 in Supplementary data). Then, the intercalated material was washed 

several times with acetone, filtrated, dispersed in a mixture DI H2O (70%)/ethanol (30%) and finally 

exposed to sonication step (25 min). The dispersion was centrifuged at 4500 rpm for 30 minutes, in 

order to separate the thick unexfoliated materials, and then the supernatant was collected and used for 

the preparation of the samples. The concentration is estimated by taking 1 mL of the resulted solution, 

heating it up to evaporate the solvent and weighing the collected powder: the estimated average 

concentration of the dispersion is ~10 mg/mL. 

2.3 Characterization 

Dispersed MoS2 nanoflakes were transferred in a 10 mm path length quartz cuvette and analyzed by 

means of UV-vis-IR absorption spectroscopy using a Jasco V670.  
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HR-TEM characterization was performed using a FEI Tecnai F20 TEM equipped with a Schottky 

emitter (200 keV). The samples were prepared by drop casting on a holey carbon-copper grid, 

followed by solvent evaporation.  

XPS experiments were carried out with a Thermo Scientific K-Alpha X-ray photoelectron 

spectrometer equipped with an aluminum X-ray source (energy 1,486.6 eV) at a base pressure of 

10-8-10-9 mbar. The X-ray beam spot size was ~400 µm. All spectra have been referenced to C1s 

adventitious carbon at 284.8 eV. The peak fitting was performed with constraints on the full width half 

maximum (FWHM) and the peak-area ratio of the spin-orbit components. 

Raman spectra were acquired at room temperature with a Renishaw InVia spectrometer equipped with 

a 532 nm laser. The measurements were carried out in ambient air using a 100× lens objective 

(numerical aperture NA = 0.85) providing a beam spot size of ~700 nm. The excitation power was 

kept below 1 mW to avoid local heating and damage effects.  

Back-gated FETs were fabricated on thermally-oxidized heavily n-doped silicon substrates (ρSi ≈ 

0.001 Ω·cm, tox ≈ 290 nm) by means of e-beam nanolithography, thermal evaporation of Au (90 nm) 

and lift-off. Electrical measurements were carried out under inert atmosphere (N2-filled glovebox) 

with source-measurement units from Keithley (model 2636A). 

3. Results and discussion 

3.1 Structural properties of DMSO-solvated lithium-ion intercalated MoS2 nanosheets 

Lithium compounds have been widely used to intercalate and exfoliate layered materials into 2D 

nanoflakes. When DMSO is employed as the electrolyte, lithium ions can coordinate with the solvent 

to form DMSO-solvated lithium-ion complexes (Li+-DMSO)x [36]. Westphal and Pliego have 

theoretically demonstrated that lithium tends to connect with four DMSO molecules [37]. Li+(DMSO)x 

species can penetrate in between the MoS2 layers causing an increasing of the interfacial spacing. As 

displayed in the Fig. S1, in the supplementary data, a significant expansion of the crystal can be 

clearly seen which confirm the intercalation process. LiCl was dissolved in DMSO (1 mol/L solution) 

and served as electrolyte and source of lithium ions, while a bulk crystal of MoS2 and a platinum wire 
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were used as working and counter electrode, respectively. The expanded material was then dispersed 

in a water/ethanol mixture and sonicated for 25 minutes to obtain mono- and few-layer thick MoS2 

nanosheets. 

 

Fig. 1. (a) STEM image of MoS2 nanosheets exfoliated via lithium-ion intercalation in DMSO and deposited 

onto a holey carbon grid. (b) Thickness distribution obtained from STEM measurements on 60 different 

nanoflakes. (c) Lateral-size distribution based on data from 150 different nanoflakes. (d) HR-TEM image 

showing the presence of two distinct crystalline phases. (e) Zoom-in image of the 1T region marked in yellow 

and (f) its corresponding diffraction pattern. (g) Zoom-in image of the 2H region marked in blue and (h) its 

corresponding diffraction pattern. 

Fig. 1 displays scanning transmission electron microscopy (STEM) images of the exfoliated MoS2 

nanosheets with different lateral sizes and thicknesses. To give an estimation of the size and the 
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thickness of resulted nanosheets, we performed STEM and HR-TEM statistical studies on 150 and 60 

nanoflakes produced by different batches, respectively. The analysis revealed the presence of a large 

amount of mono-, bi- and tri-layer thick MoS2 nanoflakes with an average lateral size of ~0.8 µm. HR-

TEM images (Fig. 1d, e and g) reveal the existence of two crystal phases within individual MoS2 

nanosheets, i.e. 1T (highlighted in yellow) and 2H (highlighted in blue), with characteristic diffraction 

patterns (Fig. 1f and h, respectively) 

3.2 Spectroscopic investigation 

The optical properties of the exfoliated MoS2 nanosheets were investigated through ultraviolet-visible 

(UV-Vis) absorption spectroscopy, as reported in Fig. 2. Two peaks appeared at λ ≈ 672 nm and ≈ 612 

nm, and can be attributed to the A and B excitons, respectively, corresponding to optical transitions 

occurring at the Κ point of the Brillouin zone [16].  

 
 

Fig. 2. UV-Vis absorption spectrum of MoS2 nanosheets dispersed a mixture of H2O (70%) and ethanol (30%). 

The inset shows a magnified view of the spectrum in the region of the A and B exciton peaks. 

We have performed X-ray photoelectron spectroscopy (XPS) measurements on both pristine and 

exfoliated material. Fig. 3 compares the Mo 3d and S2p high-resolution XPS spectra of the 

unexfoliated bulk MoS2 crystal with those of the nanosheets prepared via lithium-ion intercalation in 
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DMSO. In the case of pristine MoS2, the Mo 3d spectrum (Fig. 3a) shows two distinct peaks at 229.4 

eV and 232.5 eV, corresponding to the typical Mo4+ 3d5/2 and Mo4+ 3d3/2 spin-orbit components of the 

semiconducting 2H phase. 

The S 2p spectrum displays two peaks at 162.2 eV and 163.4 eV, which are attributed to the S 2p3/2 

and S 2p1/2 components, respectively (Fig. 3b). On the other hand, in the case of the exfoliated 

material, the Mo 3d spectrum (Fig. 3c) displays an additional pair of peaks ─ located at lower binding 

energies (ΔEb ≈ 1 eV) ─ that can be assigned to the metallic 1T phase [38-40]. The S 2p spectrum  

(Fig. 3d) also presents broader peaks that can be fitted to two pairs of doublets, i.e. those of the 2H 

phase at high binding energy (green) and those of the 1T phase at low binding energy (light blue). The 

peak fitting of Mo 3d and S 2p spectra allows estimating the relative content of 1T (~40%) and 2H 

(~60%) phases (see Fig. S2 and Table S1 in the Supplementary Data). 

Our intercalation/exfoliation approach enables the preparation of nanosheets that are preferentially 

semiconducting, whereas previous works based on chemical or electrochemical methods have shown 

the formation of metallic nanosheets with 1T content exceeding 60%. The change from 2H to 1T upon 

intercalation is commonly associated to a strong electron transfer from the lithium atoms to the MoS2 

layers [41, 42]. In our case, the presence of DMSO molecules coordinating the Li ions [37] could 

presumably mitigate the intercalation step and consequently such electron-transfer process, thereby 

limiting the conversion to the metallic 1T phase.  
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The structural properties of the exfoliated MoS2 nanosheets were further investigated by means of 

Raman spectroscopy, which can provide detailed information on layer thickness [43], atomic 

coordination, e.g. trigonal prismatic (2H) vs. octahedral (1T) [44], as well as on structural disorder 

[45]. Fig. 4a portrays the Raman spectra of a MoS2 nanoflake obtained by DMSO-solvated lithium-ion 

intercalation process (blue) and mechanical exfoliation (red). The former exhibits three additional 

peaks located at ~157 cm-1, ~227 cm-1 and ~331 cm-1, which can be attributed to the J1, J2 and J3 

modes of 1T′ crystal phase, respectively. At the same time, the A1g and E1
2g modes maintain a similar 

frequency and relative intensity ─ see ref. [46] for a comparison between the 1T/1T′ and 2H modes ─ 

which indicates that both polytypes coexist in our electrochemically intercalated MoS2 nanosheets 

 

Fig. 3. (a, b) High-resolution XPS spectra of (a) Mo 3d and (b) S 2p regions acquired from unexfoliated MoS2 

crystals. The relatively small peak at 235.7 eV (Mo6+ state) reveals the presence of a low level of oxidation in the 

unexfoliated material. (c, d) High-resolution XPS spectra of the (c) Mo 3d and (d) S 2p regions acquired from 

MoS2 nanosheets prepared via lithium-ion intercalation in DMSO. The oxidation level is not modified by the 

intercalation/exfoliation process. All the peak positions were corrected according to the C 1s signal at 284.8 eV. 
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within a lateral scale of ~0.7 µm (laser-beam diameter), in agreement with the results of TEM and 

XPS investigations. On the other hand, as shown in the Fig. 4b the peaks separation is estimated at 

~21.8 cm-1 which confirms the formation of an average thickness about two-three monolayers. 

Noteworthy, the peak at ~227 cm-1 can be also ascribed to the longitudinal acoustic phonons (LA) at 

the M point in the Brillouin that are active only in the presence of defects, as discussed in detail by 

Mignuzzi and coworkers. The quality of the MoS2 nanosheets can be assessed by calculating the ratio 

between the intensities of the LA(M) and A1g modes [21]. If we assume for simplicity that the peak at 

~227 cm-1 arises exclusively from LA(M) acoustic vibrations, we can extract I(LA(M))/I(A1g) values 

within the range 0.1-0.3, which correspond to an average inter-defect distance LD of 1-2 nm. The 

strong contribution of defects in the Raman spectra of electrochemically intercalated MoS2 can be also 

evaluated by the line shapes of the A1g and E1
2g modes (Fig. 4b), which are characterized by the 

presence of shoulder peaks at ~378 cm-1 and ~410 cm-1, corresponding to defect-activated LO(M) and 

ZO(M) phonon modes, respectively. We observed similar line shapes also in the case of defective 

MoS2 sheets containing sulfur vacancies with relative density ΔS/S ≥ 5% generated by low-energy 

(500 eV) Ar-ion irradiation. 

 

Fig. 4. (a) Raman spectra of MoS2 nanosheets exfoliated by DMSO-solvated lithium-ion intercalation (blue, 

bilayer) and scotch-tape technique (red, monolayer). The peak (i) can be also attributed to the defect-activated 

LA(M) mode at ~227 cm-1, whereas the peak (ii) ─ present in both spectra ─ corresponds to the 2TA(X) Raman 

mode of the SiO2/Si substrate. (b) Raman spectrum of a bilayer MoS2 flake obtained via DMSO-solvated 
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lithium-ion intercalation in the spectral region of the E1
2g and A1g modes. The fitting was carried out with the 

method presented in ref. [45]  for defective MoS2 sheets. 

3.3 Field-effect transistors and electrical properties 

We investigated the charge-transport properties of individual MoS2 nanosheets through the fabrication 

and characterization of back-gated FETs (Fig. 5). As-fabricated devices showed n-type behavior with 

Ion/Ioff ratios in the range 1-10 and field-effect mobilities µFE up to 10-3 cm2 V-1 s-1. These are several 

orders of magnitude lower than equivalent devices based on mechanically-exfoliated MoS2 nanosheets 

(µFE ≈ 30 cm2 V-1 s-1 and Ion/Ioff ≈ 107), likely due to a high degree of disorder associated to the 2H/1T 

nanoscale polymorphism ─ confirmed by multiple experimental techniques (i.e. HR-TEM, XPS and 

Raman spectroscopy) ─ and defects generated during the intercalation/exfoliation process.  

Following common procedures reported in literature for Au-contacted MoS2 FETs, we have carried 

out a high-vacuum annealing step at 150 °C for about 15 hours (base pressure ~ 5×10-8 mbar) in order 

to reduce the contact resistance, as well to remove solvent traces and environmental adsorbates [47]. 

On average, such a process leads to an increase of µFE by approximatively one order of magnitude, but 

does not improve significantly the Ion/Ioff ratio. 

Typical output and transfer characteristics acquired under inert atmosphere (N2-filled glovebox) are 

reported in the supplementary data (Fig. S3). It should be noticed that thermal annealing at 150°C can 

also induce a partial back-conversion of the 1T phase into 2H, as revealed by Raman studies 

conducted on MoS2 nanosheets vacuum-annealed at different temperatures. Unexpectedly, annealing 

at higher temperatures (~250 °C), which was supposed to be beneficial for the complete 1T-to-2H 

conversion (Fig. S4), led to a significant drop in in field-effect mobility (µFE ≤ 10-4 cm2 V-1 s-1). 
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Fig. 5. Fabrication and characterization of FETs based on exfoliated MoS2 nanosheets. (a,b) Optical micrographs 

of a bilayer MoS2 flake deposited on a SiO2/Si substrate before (a) and after (b) the fabrication of the source and 

drain contacts (Au, 90 nm). The heavily-doped silicon substrate is used as the back gate. (c) Transfer curves of 

the FET device shown in (b) acquired at different stages under inert atmosphere (N2-filled glovebox). The drain-

source bias voltage Vds was set at 4 V. The curve obtained after butanethiol treatment (green) is reported in semi-

log scale in the inset and displays Ion/Ioff current ratio up to 102. 

We expect that such degradation ─ not observed in the case of mechanically exfoliated MoS2 sheets 

(see supplementary data, Section 5) ─ stems from the thermal evolution/expansion of defects, which 

involves the formation of grain boundaries following to the rearrangements of 1T domains into 2H 

domains. At this stage, more comprehensive studies are needed to shed light on the effects of the 

exfoliation-induced disorder on the charge-transport properties of MoS2 nanosheets, which is however 

beyond the scope of the present work. 

Finally, we noticed that sulfur vacancies could be generated during ion intercalation and exfoliation. 

Indeed, X-ray photoemission spectroscopy (XPS) measurements revealed that the exfoliation process 

leads to a reduction of the S/Mo stoichiometric ratio, from ~2 for the bulk form to ~1.94 for the 

exfoliated nanosheets (see Section 3 in supplementary data). Hence, we explored the use of a vapor-

phase chemical treatment with butanethiols molecules, with the aim of improving the electrical 

characteristics of our FETs by vacancy healing. Fig. 5b shows the effect of the butanethiol treatment 

on the transfer characteristics of a device fabricated on a bilayer MoS2 nanosheet. Upon exposure to 
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butanethiol molecules, the field-effect mobility µFE improves by a more than a factor 3 and the Ion/Ioff 

current ratio reaches ~102 (inset). Such a remarkable improvement suggests that sulfur vacancies are 

abundant defects in our chemically-exfoliated nanosheets. By and large, it should be noticed that the 

figures of merit of our devices are comparable with those reported in the literature for liquid-phase 

exfoliated nanosheets and their network films [21, 48, 49]; however, they remain still much lower than 

those of mechanically-exfoliated MoS2 flakes [10, 47, 50-52], indicating that other forms of disorder ─ 

as discussed above ─ are responsible for the degradation of the charge-transport properties in the 

nanosheets obtained via lithium-ion intercalation in DMSO.  

 

4. Conclusions 

In summary, we have presented a facile, fast and low-cost approach to exfoliate MoS2 crystals under 

ambient conditions via DMSO-solvated lithium-ion intercalation. Our method allows producing 

single-, bi- and tri-layer thick nanosheets of MoS2 with an average lateral size of ~0.8 µm. HR-TEM, 

XPS and Raman spectroscopy revealed the presence of a large amount of semiconducting 2H phase 

(~60%). The electronic properties of the nanoflakes were investigated through the fabrication and 

characterization of back-gated field-effect transistors (FETs), which displayed unipolar 

semiconducting behavior (n-type), in line with the observation of a predominant 2H phase within the 

exfoliated flakes. We succeeded in improving the electronic properties of our FETs through a 

combination of vacuum annealing and defect healing with short linear thiolated molecules, resulting in 

µFE values up to 2×10-2 cm2 V-1 s-1 and Ion/Ioff ≈ 100. Our results on vacuum annealing of MoS2 

nanosheets with mixed 1T/2H phases cast the basis for future investigations on the influence of 

exfoliation-induced disorder on the charge transport properties. The approach presented in this work 

paves the ways towards the fast preparation ─ under ambient conditions ─ of semiconducting MoS2 

nanosheets, which can be conveniently employed in low-cost flexible (opto-) electronic devices. 
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