45 research outputs found
Transcriptome profiling of a toxic dinoflagellate reveals a gene-rich protist and a potential impact on gene expression due to bacterial presence
© The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 5 (2010): e9688, doi:10.1371/journal.pone.0009688.Dinoflagellates are unicellular, often photosynthetic protists that play a major role in the dynamics of the Earth's oceans and climate. Sequencing of dinoflagellate nuclear DNA is thwarted by their massive genome sizes that are often several times that in humans. However, modern transcriptomic methods offer promising approaches to tackle this challenging system. Here, we used massively parallel signature sequencing (MPSS) to understand global transcriptional regulation patterns in Alexandrium tamarense cultures that were grown under four different conditions. We generated more than 40,000 unique short expression signatures gathered from the four conditions. Of these, about 11,000 signatures did not display detectable differential expression patterns. At a p-value < 1E-10, 1,124 signatures were differentially expressed in the three treatments, xenic, nitrogen-limited, and phosphorus-limited, compared to the nutrient-replete control, with the presence of bacteria explaining the largest set of these differentially expressed signatures. Among microbial eukaryotes, dinoflagellates contain the largest number of genes in their nuclear genomes. These genes occur in complex families, many of which have evolved via recent gene duplication events. Our expression data suggest that about 73% of the Alexandrium transcriptome shows no significant change in gene expression under the experimental conditions used here and may comprise a “core” component for this species. We report a fundamental shift in expression patterns in response to the presence of bacteria, highlighting the impact of biotic interaction on gene expression in dinoflagellates.This work was primarily funded by a collaborative grant from the National Institutes of Health (R01 ES 013679-01A2) awarded to DB, DMA, and M.
Bento Soares. Funding support for DMA and DLE was also provided from the Woods Hole Center for Oceans and Human Health from the NSF/NIEHS Centers for
Oceans and Human Health program, NIEHS (P50 ES 012742) and (NSF OCE-043072). Additional support came from the National Science Foundation (EF-0732440)
in a grant awarded to F. Gerald Plumley, DB, JDH, and DMA. AM was supported by an Institutional NRSA (T 32 GM98629)
Genetic indicators of iron limitation in wild populations of \u3cem\u3eThalassiosira oceanica\u3c/em\u3e from the northeast Pacific Ocean
Assessing the iron (Fe) nutritional status of natural diatom populations has proven challenging as physiological and molecular responses can differ in diatoms of the same genus. We evaluated expression of genes encoding flavodoxin (FLDA1) and an Fe-starvation induced protein (ISIP3) as indicators of Fe limitation in the marine diatom Thalassiosira oceanica. The specificity of the response to Fe limitation was tested in cultures grown under Fe- and macronutrient-deficient conditions, as well as throughout the diurnal light cycle. Both genes showed a robust and specific response to Fe limitation in laboratory cultures and were detected in small volume samples collected from the northeast Pacific, demonstrating the sensitivity of this method. Overall, FLDA1 and ISIP3 expression was inversely related to Fe concentrations and offered insight into the Fe nutritional health of T. oceanica in the field. As T. oceanica is a species tolerant to low Fe, indications of Fe limitation in T. oceanica populations may serve as a proxy for severe Fe stress in the overall diatom community. At two shallow coastal locations, FLD1A and ISIP3 expression revealed Fe stress in areas where dissolved Fe concentrations were high, demonstrating that this approach may be powerful for identifying regions where Fe supply may not be biologically available
Centers for Oceans and Human Health : a unified approach to the challenge of harmful algal blooms
© 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License
The definitive version was published in Environmental Health 7 (2008): S2, doi:10.1186/1476-069X-7-S2-S2.Harmful algal blooms (HABs) are one focus of the national research initiatives on Oceans and Human Health (OHH) at NIEHS, NOAA and NSF. All of the OHH Centers, from the east coast to Hawaii, include one or more research projects devoted to studying HAB problems and their relationship to human health. The research shares common goals for understanding, monitoring and predicting HAB events to protect and improve human health: understanding the basic biology of the organisms; identifying how chemistry, hydrography and genetic diversity influence blooms; developing analytical methods and sensors for cells and toxins; understanding health effects of toxin exposure; and developing conceptual, empirical and numerical models of bloom dynamics.
In the past several years, there has been significant progress toward all of the common goals. Several studies have elucidated the effects of environmental conditions and genetic heterogeneity on bloom dynamics. New methods have been developed or implemented for the detection of HAB cells and toxins, including genetic assays for Pseudo-nitzschia and Microcystis, and a biosensor for domoic acid. There have been advances in predictive models of blooms, most notably for the toxic dinoflagellates Alexandrium and Karenia. Other work is focused on the future, studying the ways in which climate change may affect HAB incidence, and assessing the threat from emerging HABs and toxins, such as the cyanobacterial neurotoxin β-N-methylamino-L-alanine.
Along the way, many challenges have been encountered that are common to the OHH Centers and also echo those of the wider HAB community. Long-term field data and basic biological information are needed to develop accurate models. Sensor development is hindered by the lack of simple and rapid assays for algal cells and especially toxins. It is also critical to adequately understand the human health effects of HAB toxins. Currently, we understand best the effects of acute toxicity, but almost nothing is known about the effects of chronic, subacute toxin exposure. The OHH initiatives have brought scientists together to work collectively on HAB issues, within and across regions. The successes that have been achieved highlight the value of collaboration and cooperation across disciplines, if we are to continue to advance our understanding of HABs and their relationship to human health.This work was funded through grants from the NSF/NIEHS Centers for
Oceans and Human Health, NIEHS P50 ES012742 and NSF OCE-043072
(DLE and DMA), NSF OCE04-32479 and NIEHS P50 ES012740 (PB and
RRB), NSF OCE-0432368 and NIEHS P50 ES12736 (LEB), NIEHS P50
ES012762 and NSF OCE-0434087 (RCS, KAL, MSP, MLW, and KAH).
Additional support was provided by the ECOHAB Grant program NSF
Grant OCE-9808173 and NOAA Grant NA96OP0099 (DMA), NOAA
OHHI NA04OAR4600206 (RRB) and Washington State Sea Grant
NA16RG1044 (RCS). KAL and VLT were supported in part by the West
Coast Center for Oceans and Human Health (WCCOHH) as part of the
NOAA Oceans and Human Health Initiative
Gene Expression Profiling via Multigene Concatemers
We established a novel method, Gene Expression Profiling via Multigene Concatemers (MgC-GEP), to study multigene expression patterns simultaneously. This method consists of the following steps: (1) cDNA was obtained using specific reverse primers containing an adaptor. (2) During the initial 1–3 cycles of polymerase chain reaction (PCR), the products containing universal adaptors with digestion sites at both termini were amplified using specific forward and reverse primers containing the adaptors. (3) In the subsequent 4–28 cycles, the universal adaptors were used as primers to yield products. (4) The products were digested and ligated to produce concatemers. (5) The concatemers were cloned into the vector and sequenced. Then, the occurrence of each gene tag was determined. To validate MgC-GEP, we analyzed 20 genes in Saccharomyces cerevisiae induced by weak acid using MgC-GEP combined with real-time reverse transcription (RT)-PCR. Compared with the results of real-time RT-PCR and the previous reports of microarray analysis, MgC-GEP can precisely determine the transcript levels of multigenes simultaneously. Importantly, MgC-GEP is a cost effective strategy that can be widely used in most laboratories without specific equipment. MgC-GEP is a potentially powerful tool for multigene expression profiling, particularly for moderate-throughput analysis
Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure
© 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Health 7 (2008): S5, doi:10.1186/1476-069X-7-S2-S5.Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.The authors acknowledge the financial support for the NSF/NIEHS and
NOAA Centers for Oceans and Human Healt
Pathogenic marine microbes influence the effects of climate change on a commercially important tropical bivalve
There is growing evidence that climate change will increase the prevalence of toxic algae and harmful bacteria, which can accumulate in marine bivalves. However, we know little about any possible interactions between exposure to these microorganisms and the effects of climate change on bivalve health, or about how this may affect the bivalve toxin-pathogen load. In mesocosm experiments, mussels, Perna viridis, were subjected to simulated climate change (warming and/or hyposalinity) and exposed to harmful bacteria and/or toxin-producing dinoflagellates. We found significant interactions between climate change and these microbes on metabolic and/or immunobiological function and toxin-pathogen load in mussels. Surprisingly, however, these effects were virtually eliminated when mussels were exposed to both harmful microorganisms simultaneously. This study is the first to examine the effects of climate change on determining mussel toxin-pathogen load in an ecologically relevant, multi-trophic context. The results may have considerable implications for seafood safety
Existential Loneliness and end-of-life care: A Systematic Review
Contains fulltext :
88662.pdf (publisher's version ) (Closed access)Patients with a life-threatening illness can be confronted with various types of loneliness, one of which is existential loneliness (EL). Since the experience of EL is extremely disruptive, the issue of EL is relevant for the practice of end-of-life care. Still, the literature on EL has generated little discussion and empirical substantiation and has never been systematically reviewed. In order to systematically review the literature, we (1) identified the existential loneliness literature; (2) established an organising framework for the review; (3) conducted a conceptual analysis of existential loneliness; and (4) discussed its relevance for end-of-life care. We found that the EL concept is profoundly unclear. Distinguishing between three dimensions of EL-as a condition, as an experience, and as a process of inner growth-leads to some conceptual clarification. Analysis of these dimensions on the basis of their respective key notions-everpresent, feeling, defence; death, awareness, difficult communication; and inner growth, giving meaning, authenticity-further clarifies the concept. Although none of the key notions are unambiguous, they may function as a starting point for the development of care strategies on EL at the end of life.1 april 201
Transcriptome profile analysis of flowering molecular processes of early flowering trifoliate orange mutant and the wild-type [Poncirus trifoliata (L.) Raf.] by massively parallel signature sequencing
<p>Abstract</p> <p>Background</p> <p>After several years in the juvenile phase, trees undergo flowering transition to become mature (florally competent) trees. This transition depends on the balanced expression of a complex network of genes that is regulated by both endogenous and environmental factors. However, relatively little is known about the molecular processes regulating flowering transition in woody plants compared with herbaceous plants.</p> <p>Results</p> <p>Comparative transcript profiling of spring shoots after self-pruning was performed on a spontaneously early flowering trifoliate orange mutant (precocious trifoliate orange, <it>Poncirus trifoliata</it>) with a short juvenile phase and the wild-type (WT) tree by using massively parallel signature sequencing (MPSS). A total of 16,564,500 and 16,235,952 high quality reads were obtained for the WT and the mutant (MT), respectively. Interpretation of the MPSS signatures revealed that the total number of transcribed genes in the MT (31,468) was larger than in the WT (29,864), suggesting that newly initiated transcription occurs in the MT. Further comparison of the transcripts revealed that 2735 genes had more than twofold expression difference in the MT compared with the WT. In addition, we identified 110 citrus flowering-time genes homologous with known elements of flowering-time pathways through sequencing and bioinformatics analysis. These genes are highly conserved in citrus and other species, suggesting that the functions of the related proteins in controlling reproductive development may be conserved as well.</p> <p>Conclusion</p> <p>Our results provide a foundation for comparative gene expression studies between WT and precocious trifoliate orange. Additionally, a number of candidate genes required for the early flowering process of precocious trifoliate orange were identified. These results provide new insight into the molecular processes regulating flowering time in citrus.</p
Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis
To investigate the impact of iron deficiency on bioenergetic pathways in Chlamydomonas, we compared growth rates, iron content, and photosynthetic parameters systematically in acetate versus CO2-grown cells. Acetate-grown cells have, predictably (2-fold) greater abundance of respiration components but also, counter-intuitively, more chlorophyll on a per cell basis. We found that phototrophic cells are less impacted by iron deficiency and this correlates with their higher iron content on a per cell basis, suggesting a greater capacity/ability for iron assimilation in this metabolic state. Phototrophic cells maintain both photosynthetic and respiratory function and their associated Fe-containing proteins in conditions where heterotrophic cells lose photosynthetic capacity and have reduced oxygen evolution activity. Maintenance of NPQ capacity might contribute to protection of the photosynthetic apparatus in iron-limited phototrophic cells. Acetate-grown iron-limited cells maintain high growth rates by suppressing photosynthesis but increasing instead respiration. These cells are also able to maintain a reduced plastoquinone pool
Symbiodinium Transcriptomes: Genome Insights into the Dinoflagellate Symbionts of Reef-Building Corals
Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance, little is known about the genetics of dinoflagellates in general and Symbiodinium in particular. Here, we used 454 sequencing to generate transcriptome data from two Symbiodinium species from different clades (clade A and clade B). With more than 56,000 assembled sequences per species, these data represent the largest transcriptomic resource for dinoflagellates to date. Our results corroborate previous observations that dinoflagellates possess the complete nucleosome machinery. We found a complete set of core histones as well as several H3 variants and H2A.Z in one species. Furthermore, transcriptome analysis points toward a low number of transcription factors in Symbiodinium spp. that also differ in the distribution of DNA-binding domains relative to other eukaryotes. In particular the cold shock domain was predominant among transcription factors. Additionally, we found a high number of antioxidative genes in comparison to non-symbiotic but evolutionary related organisms. These findings might be of relevance in the context of the role that Symbiodinium spp. play as coral symbionts