9 research outputs found

    PARP-Inhibitor Treatment Prevents Hypertension Induced Cardiac Remodeling by Favorable Modulation of Heat Shock Proteins, Akt-1/GSK-3beta and Several PKC Isoforms.

    Get PDF
    Spontaneously hypertensive rat (SHR) is a suitable model for studies of the complications of hypertension. It is known that activation of poly(ADP-ribose) polymerase enzyme (PARP) plays an important role in the development of postinfarction as well as long-term hypertension induced heart failure. In this study, we examined whether PARP-inhibitor (L-2286) treatment could prevent the development of hypertensive cardiopathy in SHRs. 6-week-old SHR animals were treated with L-2286 (SHR-L group) or placebo (SHR-C group) for 24 weeks. Wistar-Kyoto rats were used as aged-matched, normotensive controls (WKY group). Echocardiography was performed, brain-derived natriuretic peptide (BNP) activity and blood pressure were determined at the end of the study. We detected the extent of fibrotic areas. The amount of heat-shock proteins (Hsps) and the phosphorylation state of Akt-1Ser473, glycogen synthase kinase (GSK)-3betaSer9, forkhead transcription factor (FKHR)Ser256, mitogen activated protein kinases (MAPKs), and protein kinase C (PKC) isoenzymes were monitored. The elevated blood pressure in SHRs was not influenced by PARP-inhibitor treatment. Systolic left ventricular function and BNP activity did not differ among the three groups. L-2286 treatment decreased the marked left ventricular (LV) hypertrophy which was developed in SHRs. Interstitial collagen deposition was also decreased by L-2286 treatment. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2Thr183-Tyr185, Akt-1Ser473, GSK-3betaSer9, FKHRSer256, and PKC epsilonSer729 and the level of Hsp90 were increased, while the activity of PKC alpha/betaIIThr638/641, zeta/lambda410/403 were mitigated by L-2286 administration. We could detect signs of LV hypertrophy without congestive heart failure in SHR groups. This alteration was prevented by PARP inhibition. Our results suggest that PARP-inhibitor treatment has protective effect already in the early stage of hypertensive myocardial remodeling

    PARP-Inhibitor Treatment Prevents Hypertension Induced Cardiac Remodeling by Favorable Modulation of Heat Shock Proteins, Akt-1/GSK-3β and Several PKC Isoforms

    Get PDF
    Spontaneously hypertensive rat (SHR) is a suitable model for studies of the complications of hypertension. It is known that activation of poly(ADP-ribose) polymerase enzyme (PARP) plays an important role in the development of postinfarction as well as long-term hypertension induced heart failure. In this study, we examined whether PARP-inhibitor (L-2286) treatment could prevent the development of hypertensive cardiopathy in SHRs. 6-week-old SHR animals were treated with L-2286 (SHR-L group) or placebo (SHR-C group) for 24 weeks. Wistar-Kyoto rats were used as aged-matched, normotensive controls (WKY group). Echocardiography was performed, brain-derived natriuretic peptide (BNP) activity and blood pressure were determined at the end of the study. We detected the extent of fibrotic areas. The amount of heat-shock proteins (Hsps) and the phosphorylation state of Akt-1Ser473, glycogen synthase kinase (GSK)-3βSer9, forkhead transcription factor (FKHR)Ser256, mitogen activated protein kinases (MAPKs), and protein kinase C (PKC) isoenzymes were monitored. The elevated blood pressure in SHRs was not influenced by PARP-inhibitor treatment. Systolic left ventricular function and BNP activity did not differ among the three groups. L-2286 treatment decreased the marked left ventricular (LV) hypertrophy which was developed in SHRs. Interstitial collagen deposition was also decreased by L-2286 treatment. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2Thr183-Tyr185, Akt-1Ser473, GSK-3βSer9, FKHRSer256, and PKC εSer729 and the level of Hsp90 were increased, while the activity of PKC α/βIIThr638/641, ζ/λ410/403 were mitigated by L-2286 administration. We could detect signs of LV hypertrophy without congestive heart failure in SHR groups. This alteration was prevented by PARP inhibition. Our results suggest that PARP-inhibitor treatment has protective effect already in the early stage of hypertensive myocardial remodeling

    Cyclophilin D-dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia

    Get PDF
    Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram-negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)-dependent mitochondrial permeability transition (mPT) in the immunosuppressive phase of LPS-induced endotoxic shock. The liver plays an important role in immunity and organ dysfunction; therefore, we used liver RNA sequencing (RNAseq) data, Ingenuity® Pathway Analysis (IPA ® ) to investigate the complex role of mPT formation in inflammatory reprogramming and disease progression. LPS induced significant changes in the expression of 2844 genes, affecting 179 pathways related to mitochondrial dysfunction, defective oxidative phosphorylation, nitric oxide (NO) and reactive oxygen species (ROS) accumulation, nuclear factor, erythroid 2 like 2 (Nrf2), Toll-like receptors (TLRs), and tumor necrosis factor α receptor (TNFR)-mediated processes in wild-type mice. The disruption of CypD reduced LPS-induced alterations in gene expression and pathways involving TNFRs and TLRs, in addition to improving survival and attenuating oxidative liver damage and the related NO- and ROS-producing pathways. CypD deficiency diminished the suppressive effect of LPS on mitochondrial function, nuclear- and mitochondrial-encoded genes, and mitochondrial DNA (mtDNA) quantity, which could be critical in improving survival. Our data propose that CypD-dependent mPT is an amplifier in inflammatory reprogramming and promotes disease progression. The mortality in human sepsis and shock is associated with mitochondrial dysfunction. Prevention of mPT by CypD disruption reduces inflammatory reprogramming, mitochondrial dysfunction, and lethality; therefore, CypD can be a novel drug target in endotoxic shock and related inflammatory diseases

    A PARP-1 enzim farmakológiai gátlása a hipertenzív célszerv károsodás ellenében

    No full text
    Arterial hypertension represents a major cardiovascular epidemic condition, with a prevalence of more than 25% throughout the adult population, affecting nearly one billion individuals around the globe. It remains asymptomatic until later in its course, but as a long-term consequence of this condition, accumulating damage in specific organs propagates the development of cardiac pathologies, renal failure, cerebrovascular pathologies and vascular dementia, atherosclerotic vascular disease and retinopathy. Several processes are involved in these pathogenic alterations including endothelial activation, growth and migration of vascular smooth muscle cells, expression of pro-inflammatory mediators, changes in collagen turnover and the remodeling of extracellular matrix. Complex biochemical, hormonal and hemodynamic mechanisms form the basis of these alterations, referred as hypertensive target organ damage, however, the common ground is the excess generation of reactive oxygen species/ROS2, which, in addition to governing these pathological changes, possesses direct damaging properties6. Additional factors accompanying chronic hypertension may amplify these processes, including arterial stiffness, effects of sympathetic over-activity, dysregulation of tissue perfusion and increased activity of several hormone systems, especially the renin-angiotensinaldosterone system/RAAS2

    Intraguild predation as a potential explanation for the population decline of the threatened native fish, the European mudminnow (Umbra krameri Walbaum, 1792) by the invasive Amur sleeper (Perccottus glenii Dybowski, 1877)

    No full text
    Biotic interactions exerted by invasive species have a strong effect on ecosystems. Intraguild predation may contribute to the decline in the distribution, abundance and population size of native species and may facilitate the spread of non-native taxa. In this study, we investigated the feeding ecology of the invasive fish Amur sleeper (Perccottus glenii Dybowski, 1877) in a lowland watercourse, where it co-exists with the threatened native fish European mudminnow (Umbra krameri Walbaum, 1792). We used two sampling protocols that differed in the frequency of sampling time (e.g. monthly samplings and samplings in 10-day intervals) to provide evidence of predation, an interaction that may lead to the decline of mudminnow populations with the spread of the Amur sleeper. Aquatic macroinvertebrates comprised a major part of the diet for both sampling intervals. However, finer temporal resolution revealed the importance of fish, especially mudminnow juveniles, as a periodically available food source in the Amur sleeper’s diet. A high degree of dietary overlap was found between the different size groups of the Amur sleeper, but larger specimens tended to feed on a relatively higher proportion of fish. Our results suggested that temporal resolution of stomach content analyses may largely determine inferences on the importance of predation on juvenile mudminnow. Overall, we found that intraguild predation could contribute to the decline of European mudminnow populations, which underscores the importance of effective control measures to prevent the further spread of the invasive Amur sleeper

    A quinazoline-derivative compound with PARP inhibitory effect suppresses hypertension-induced vascular alterations in spontaneously hypertensive rats

    Get PDF
    AbstractAimsOxidative stress and neurohumoral factors play important role in the development of hypertension-induced vascular remodeling, likely by disregulating kinase cascades and transcription factors. Oxidative stress activates poly(ADP-ribose)-polymerase (PARP-1), which promotes inflammation and cell death. We assumed that inhibition of PARP-1 reduces the hypertension-induced adverse vascular changes. This hypothesis was tested in spontaneously hypertensive rats (SHR).Methods and resultsTen-week-old male SHRs and wild-type rats received or not 5mg/kg/day L-2286 (a water-soluble PARP-inhibitor) for 32weeks, then morphological and functional parameters were determined in their aortas. L-2286 did not affect the blood pressure in any of the animal groups measured with tail-cuff method. Arterial stiffness index increased in untreated SHRs compared to untreated Wistar rats, which was attenuated by L-2286 treatment. Electron and light microscopy of aortas showed prominent collagen deposition, elevation of oxidative stress markers and increased PARP activity in SHR, which were attenuated by PARP-inhibition. L-2286 treatment decreased also the hypertension-activated mitochondrial cell death pathway, characterized by the nuclear translocation of AIF. Hypertension activated all three branches of MAP-kinases. L-2286 attenuated these changes by inducing the expression of MAPK phosphatase-1 and by activating the cytoprotective PI-3-kinase/Akt pathway. Hypertension activated nuclear factor-kappaB, which was prevented by PARP-inhibition via activating its nuclear export.ConclusionPARP-inhibition has significant vasoprotective effects against hypertension-induced vascular remodeling. Therefore, PARP-1 can be a novel therapeutic drug target for preventing hypertension-induced vascular remodeling in a group of patients, in whom lowering the blood pressure to optimal range is harmful or causes intolerable side effects
    corecore