270 research outputs found

    EXXON donor solvent coal liquefaction process

    Get PDF
    A solvent coal liquefaction process to produce low-sulfur liquid products from a wide range of coals is described. An integrated program of laboratory and engineering research and development in conjunction with operation of a 250 T/D pilot plant is discussed

    Irradiated Esophageal Cells are Protected from Radiation-Induced Recombination by MnSOD Gene Therapy

    Get PDF
    Radiation-induced DNA damage is a precursor to mutagenesis and cytotoxicity. During radiotherapy, exposure of healthy tissues can lead to severe side effects. We explored the potential of mitochondrial SOD (MnSOD) gene therapy to protect esophageal, pancreatic and bone marrow cells from radiation-induced genomic instability. Specifically, we measured the frequency of homologous recombination (HR) at an integrated transgene in the Fluorescent Yellow Direct Repeat (FYDR) mice, in which an HR event can give rise to a fluorescent signal. Mitochondrial SOD plasmid/liposome complex (MnSOD-PL) was administered to esophageal cells 24 h prior to 29 Gy upper-body irradiation. Single cell suspensions from FYDR, positive control FYDR-REC, and negative control C57BL/6NHsd (wild-type) mouse esophagus, pancreas and bone marrow were evaluated by flow cytometry. Radiation induced a statistically significant increase in HR 7 days after irradiation compared to unirradiated FYDR mice. MnSOD-PL significantly reduced the induction of HR by radiation at day 7 and also reduced the level of HR in the pancreas. Irradiation of the femur and tibial marrow with 8 Gy also induced a significant increase in HR at 7 days. Radioprotection by intraesophageal administration of MnSOD-PL was correlated with a reduced level of radiation-induced HR in esophageal cells. These results demonstrate the efficacy of MnSOD-PL for suppressing radiation-induced HR in vivo.National Institutes of Health (U.S.) (NIH Grant R01-CA83876-8)National Institute of Allergy and Infectious Diseases (U.S.) (NIH grant U19A1068021)National Institutes of Health (U.S.) (Grant T32-ES07020)United States. Dept. of Energy (DOE DE-FG01-04ER04)National Institutes of Health (U.S.) (NIH P01-CA26735

    XTrace: Making the most of every sample in stochastic trace estimation

    Full text link
    The implicit trace estimation problem asks for an approximation of the trace of a square matrix, accessed via matrix-vector products (matvecs). This paper designs new randomized algorithms, XTrace and XNysTrace, for the trace estimation problem by exploiting both variance reduction and the exchangeability principle. For a fixed budget of matvecs, numerical experiments show that the new methods can achieve errors that are orders of magnitude smaller than existing algorithms, such as the Girard-Hutchinson estimator or the Hutch++ estimator. A theoretical analysis confirms the benefits by offering a precise description of the performance of these algorithms as a function of the spectrum of the input matrix. The paper also develops an exchangeable estimator, XDiag, for approximating the diagonal of a square matrix using matvecs.Comment: 31 pages, 8 figure

    Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations

    Full text link
    The randomly pivoted partial Cholesky algorithm (RPCholesky) computes a factorized rank-k approximation of an N x N positive-semidefinite (psd) matrix. RPCholesky requires only (k + 1) N entry evaluations and O(k^2 N) additional arithmetic operations, and it can be implemented with just a few lines of code. The method is particularly useful for approximating a kernel matrix. This paper offers a thorough new investigation of the empirical and theoretical behavior of this fundamental algorithm. For matrix approximation problems that arise in scientific machine learning, experiments show that RPCholesky matches or beats the performance of alternative algorithms. Moreover, RPCholesky provably returns low-rank approximations that are nearly optimal. The simplicity, effectiveness, and robustness of RPCholesky strongly support its use in scientific computing and machine learning applications.Comment: 38 pages, 4 figure

    Relaxations and Exact Solutions to Quantum Max Cut via the Algebraic Structure of Swap Operators

    Full text link
    The Quantum Max Cut (QMC) problem has emerged as a test-problem for designing approximation algorithms for local Hamiltonian problems. In this paper we attack this problem using the algebraic structure of QMC, in particular the relationship between the quantum max cut Hamiltonian and the representation theory of the symmetric group. The first major contribution of this paper is an extension of non-commutative Sum of Squares (ncSoS) optimization techniques to give a new hierarchy of relaxations to Quantum Max Cut. The hierarchy we present is based on optimizations over polynomials in the qubit swap operators. This is contrast to the ``standard'' quantum Lasserre Hierarchy, which is based on polynomials expressed in terms of the Pauli matrices. To prove correctness of this hierarchy, we give a finite presentation of the algebra generated by the qubit swap operators. This presentation allows for the use of computer algebraic techniques to manipulate simplify polynomials written in terms of the swap operators, and may be of independent interest. Surprisingly, we find that level-2 of this new hierarchy is exact (up to tolerance 10−710^{-7}) on all QMC instances with uniform edge weights on graphs with at most 8 vertices. The second major contribution of this paper is a polynomial-time algorithm that exactly computes the maximum eigenvalue of the QMC Hamiltonian for certain graphs, including graphs that can be ``decomposed'' as a signed combination of cliques. A special case of the latter are complete bipartite graphs with uniform edge-weights, for which exact solutions are known from the work of Lieb and Mattis. Our methods, which use representation theory of the symmetric group, can be seen as a generalization of the Lieb-Mattis result.Comment: 75 pages, 6 figure

    Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation.

    Get PDF
    Exposure to high levels of ionizing radiation (IR) leads to debilitating and dose-limiting gastrointestinal (GI) toxicity. Using three-dimensional mouse crypt culture, we demonstrated that p53 target PUMA mediates radiation-induced apoptosis via a cell-intrinsic mechanism, and identified the GSK-3 inhibitor CHIR99021 as a potent radioprotector. CHIR99021 treatment improved Lgr5+ cell survival and crypt regeneration after radiation in culture and mice. CHIR99021 treatment specifically blocked apoptosis and PUMA induction and K120 acetylation of p53 mediated by acetyl-transferase Tip60, while it had no effect on p53 stabilization, phosphorylation or p21 induction. CHIR99021 also protected human intestinal cultures from radiation by PUMA but not p21 suppression. These results demonstrate that p53 posttranslational modifications play a key role in the pathological and apoptotic response of the intestinal stem cells to radiation and can be targeted pharmacologically

    Characterization of the genes encoding carbonic anhydrase I of chimpanzee and gorilla: comparative analysis of 5' flanking erythroid-specific promoter sequences

    Full text link
    The genes encoding carbonic anhydrase I (CA I) have been characterized for chimpanzee (Pan troglodytes) and gorilla (Gorilla gorilla). In addition, 44 nucleotides (nt) at the 5' end of the noncoding first exon (exon la), which is unique to the erythroid CA I mRNA, together with 188 nt of the adjacent 5' flanking regions, were sequenced for the corresponding positions of the CA I of orangutan, pigtail macaque, and squirrel monkey. When these 5' flanking regions are compared, along with those published for human and mouse CA I, they were found to contain several conserved sequences that may bind factors involved in the erythroid-specific expression of CA I. Comparisons of the human, chimpanzee, and gorilla coding and noncoding CA I sequences do not significantly deviate from a pattern of trichotomy for the evolutionary origins of these three hominoid species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30572/1/0000207.pd
    • …
    corecore